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Preface
Linux has been the mainstay of embedded computing for many years. And yet, there are
remarkably few books that cover the topic as a whole: this book is intended to fill that gap.
The term "embedded Linux" is not well defined and can be applied to the operating system
inside a wide range of devices ranging from thermostats to Wi-Fi routers to industrial
control units. However, they are all built on the same basic open source software. Those are
the technologies that I describe in this book, based on my experience as an engineer and the
materials I have developed for my training courses.
Technology does not stand still. The industry based around embedded computing is just as
susceptible to Moore's law as mainstream computing. The exponential growth that this
implies has meant that a surprisingly large number of things have changed since the first
edition of this book was published. This third edition is fully revised to use the latest
versions of the major open source components, which include Linux 5.4, the Yocto Project
3.1 Dunfell, and Buildroot 2020.02 LTS. In addition to Autotools, the book now covers
CMake, a modern build system that has seen increased adoption in recent years.
Mastering Embedded Linux Programming covers the topics in roughly the order that you
will encounter them in a real-life project. The first eight chapters are concerned with the
early stages of the project, covering basics such as selecting the toolchain, the bootloader,
and the kernel. I introduce the idea of embedded build systems, using Buildroot and the
Yocto Project as examples. The section ends with new in-depth coverage of the Yocto
Project.
Section 2, Chapters 9 to 15, looks at the various design decisions that need to be made
before development can take place in earnest. It covers the topics of filesystems, software
update, device drivers, the init program, and power management. Chapter 12
demonstrates various techniques for rapid prototyping with a breakout board, including how
to read schematics, solder headers, and troubleshoot signals using a logic analyzer. Chapter
14 is a deep dive into Buildroot where you will learn how to partition your system software
into separate services using BusyBox runit.
Section 3, Chapters 16, 17, and 18, will help you in the implementation phase of the
project. We start with Python packaging and dependency management, a topic of growing
importance as machine learning applications continue to take the world by storm. Next, we
move on to various forms of inter-process communication and multithreaded programming.
The section concludes with a careful examination of how Linux manages memory and
demonstrates how to measure memory usage and detect memory leaks using the various
tools that are available.
The fourth section, which includes Chapters 19 and 20, shows you how to make effective
use of the many debug and profiling tools that Linux has to offer in order to detect
problems and identify bottlenecks. Chapter 19 now describes how to configure Visual
Studio Code for remote debugging using GDB. Chapter 20 now includes coverage of BPF,
a new technology that enables advanced programmatic tracing inside the Linux kernel. The



final chapter brings together several threads to explain how Linux can be used in real-time
applications.
Each chapter introduces a major area of embedded Linux. It describes the background so
that you can learn the general principles, but it also includes detailed working examples that
illustrate each of these areas. You can treat this as a book of theory, or a book of examples.
It works best if you do both: understand the theory and try it out in real life.



Who this book is for
This book is written for developers with an interest in embedded computing and Linux who
want to extend their knowledge into the various branches of the subject. In writing the
book, I assume a basic understanding of the Linux command line, and in the programming
examples, a working knowledge of the C and Python languages. Several chapters focus on
the hardware that goes into an embedded target board, and, so, familiarity with hardware
and hardware interfaces will be a definite advantage in these cases.



What this book covers
Chapter 1, Starting Out, sets the scene by describing the embedded Linux ecosystem and
the choices available to you as you start your project.
Chapter 2, Learning about Toolchains, describes the components of a toolchain and shows
you how to create a toolchain for cross-compiling code for the target board. It describes
where to get a toolchain and provides details on how to build one from the source code.
Chapter 3, All about Bootloaders, explains the role of the bootloader in loading the Linux
kernel into memory, and uses U-Boot as an example. It also introduces device trees as the
mechanism used to encode the details of the hardware in almost all embedded Linux
systems.
Chapter 4, Configuring and Building the Kernel, provides information on how to select a
Linux kernel for an embedded system and configure it for the hardware within the device. It
also covers how to port Linux to the new hardware.
Chapter 5, Building a Root Filesystem, introduces the ideas behind the user space part of an
embedded Linux implementation by means of a step-by-step guide on how to configure a
root filesystem.
Chapter 6, Selecting a Build System, covers two commonly used embedded Linux build
systems, Buildroot and the Yocto Project, which automate the steps described in the
previous four chapters.
Chapter 7, Developing with Yocto, demonstrates how to build system images on top of an
existing BSP layer, develop onboard software packages with Yocto's extensible SDK, and
roll your own embedded Linux distribution complete with runtime package management.
Chapter 8, Yocto under the Hood, is a tour of Yocto's build workflow and architecture
including an explanation of Yocto's unique multi-layer approach. It also breaks down the
basics of BitBake syntax and semantics with examples from actual recipe files.
Chapter 9, Creating a Storage Strategy, discusses the challenges created by managing flash
memory, including raw flash chips and embedded MMC (eMMC) packages. It describes
the filesystems that are applicable to each type of technology.
Chapter 10, Updating Software in the Field, examines various ways of updating the
software after the device has been deployed, and includes fully managed Over-the-Air
(OTA) updates. The key topics under discussion are reliability and security.
Chapter 11, Interfacing with Device Drivers, describes how kernel device drivers interact
with the hardware by implementing a simple driver. It also describes the various ways of
calling device drivers from user space.
Chapter 12, Prototyping with Breakout Boards, demonstrates how to prototype hardware
and software quickly using a pre-built Debian image for the BeagleBone Black together
with a peripheral breakout board. You will learn how to read datasheets, wire up boards,
mux device tree bindings, and analyze SPI signals.



Chapter 13, Starting Up – The init Program, explains how the first user space 
program–init–starts the rest of the system. It describes three versions of the init program,
each suitable for a different group of embedded systems, ranging from the simplicity of the
BusyBox init, through System V init, to the current state-of-the-art approach, systemd.
Chapter 14, Starting with BusyBox runit, shows you how to use Buildroot to divide your
system up into separate BusyBox runit services each with its own dedicated process
supervision and logging like that provided by systemd.
Chapter 15, Managing Power, considers the various ways that Linux can be tuned to reduce
power consumption, including dynamic frequency and voltage scaling, selecting deeper idle
states, and system suspend. The aim is to make devices that run for longer on a battery
charge and also run cooler.
Chapter 16, Packaging Python, explains what choices are available for bundling Python
modules together for deployment and when to use one method over another. It covers pip,
virtual environments, conda, and Docker.
Chapter 17, Learning about Processes and Threads, describes embedded systems from the
point of view of the application programmer. This chapter looks at processes and threads,
inter-process communications, and scheduling policies.
Chapter 18, Managing Memory, introduces the ideas behind virtual memory and how the
address space is divided into memory mappings. It also describes how to measure memory
usage accurately and how to detect memory leaks.
Chapter 19, Debugging with GDB, shows you how to use the GNU debugger, GDB,
together with the debug agent, gdbserver, to debug applications running remotely on the
target device. It goes on to show how you can extend this model to debug kernel code,
making use of the kernel debug stubs with KGDB.
Chapter 20, Profiling and Tracing, covers the techniques available to measure the system
performance, starting from whole system profiles and then zeroing in on particular 
areas where bottlenecks are causing poor performance. It also describes how to use
Valgrind to check the correctness of an application's use of thread synchronization and
memory allocation.
Chapter 21, Real-Time Programming, provides a detailed guide to real-time programming
on Linux, including the configuration of the kernel and the PREEMPT_RT real-time kernel
patch. The kernel trace tool, Ftrace, is used to measure kernel latencies and show the effect
of the various kernel configurations.

To get the most out of this book
The software used in this book is entirely open source. In almost all cases, I have used the
latest stable versions available at the time of writing. While I have tried to describe the
main features in a manner that is not version-specific, it is inevitable that some of the
examples will need adaptation to work with later software.



* See the Compatible Linux Distribution section of the Yocto Project Quick Build guide at
https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html
for more details.
Embedded development involves two systems: the host, which is used for developing the
programs, and the target, which runs them. For the host system, I have used Ubuntu 20.04
LTS, but most Linux distributions will work with just a little modification. You may decide
to run Linux as a guest in a virtual machine, but you should be aware that some tasks, such
as building a distribution using the Yocto Project, are quite demanding and are better run on
a native installation of Linux.
I chose three exemplar targets: the QEMU emulator, the BeagleBone Black, and the
Raspberry Pi 4. Using QEMU means that you can try out most of the examples without
having to invest in any additional hardware. On the other hand, some things work better if
you do have real hardware, for which, I have chosen the BeagleBone Black because it is not
expensive, it is widely available, and it has very good community support. The Raspberry
Pi 4 was added in the third edition for its built-in Wi-Fi and Bluetooth. Of course, you are
not limited to just these three targets. The idea behind the book is to provide you with
general solutions to problems so that you can apply them to a wide range of target boards.

https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html


Download the example code files
You can download the example code files for this book from GitHub at 
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-
Edition.
In case there's an update to the code, it will be updated on the existing GitHub repository.
We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:
http://www.packtpub.com/sites/default/files/downloads/9781789530384_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.
Code in text: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "To configure the host side of the network, you need the tunctl command from
the User Mode Linux (UML) project."
A block of code is set as follows:

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[])

{

    printf ("Hello, world!\n");

    return 0;

}

Any command-line input or output is written as follows:
$ sudo tunctl -u $(whoami) -t tap0

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Click Flash from Etcher to write the image."

TIPS OR IMPORTANT NOTES
Appear like this.

https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781801071000_ColorImages.pdf
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Section 1: 
Elements of Embedded Linux
The objective of Section 1 is to help the reader set up their development environment and
create a working platform for the later phases. It is often referred to as the "board bring-up"
phase.
This part of the book comprises the following chapters:

Chapter 1, Starting Out
Chapter 2, Learning About Toolchains
Chapter 3, All About Bootloaders
Chapter 4, Configuring and Building the Kernel
Chapter 5, Building a Root Filesystem
Chapter 6, Selecting a Build System
Chapter 7, Developing with Yocto
Chapter 8, Yocto Under the Hood



Chapter 1: Starting Out
You are about to begin working on your next project, and this time it is going to be running
Linux. What should you think about before you put finger to keyboard? Let's begin with a
high-level look at embedded Linux and see why it is popular, what are the implications of
open source licenses, and what kind of hardware you will need to run Linux.
Linux first became a viable choice for embedded devices around 1999. That was when Axis
(https://www.axis.com) released their first Linux-powered network camera and TiVo
(https://business.tivo.com) their first Digital Video Recorder (DVR). Since 1999, Linux
has become ever more popular, to the point that today it is the operating system of choice
for many classes of product. In 2021, there were over two billion devices running Linux.
That includes a large number of smartphones running Android, which uses a Linux kernel,
and hundreds of millions of set-top boxes, smart TVs, and Wi-Fi routers, not to mention a
very diverse range of devices such as vehicle diagnostics, weighing scales, industrial
devices, and medical monitoring units that ship in smaller volumes.
In this chapter, we will cover the following topics:

Choosing Linux
When not to choose Linux
Meeting the players
Moving through the project life cycle
Navigating open source
Selecting hardware for embedded Linux
Obtaining the hardware for this book
Provisioning your development environment

Choosing Linux
Why is Linux so pervasive? And why does something as simple as a TV need to run
something as complex as Linux just to display streaming video on a screen?
The simple answer is Moore's Law: Gordon Moore, co-founder of Intel, observed in 1965
that the density of components on a chip will double approximately every 2 years. That
applies to the devices that we design and use in our everyday lives just as much as it does to
desktops, laptops, and servers. At the heart of most embedded devices is a highly integrated
chip that contains one or more processor cores and interfaces with main memory, mass
storage, and peripherals of many types. This is referred to as a System on Chip, or SoC,
and SoCs are increasing in complexity in accordance with Moore's Law. A typical SoC has
a technical reference manual that stretches to thousands of pages. Your TV is not simply
displaying a video stream as the old analog sets used to do.

https://www.axis.com/
https://business.tivo.com/


The stream is digital, possibly encrypted, and it needs processing to create an image. Your
TV is (or soon will be) connected to the internet. It can receive content from smartphones,
tablets, and home media servers. It can be (or soon will be) used to play games and so on.
You need a full operating system to manage this degree of complexity.
Here are some points that drive the adoption of Linux:

Linux has the necessary functionality. It has a good scheduler, a good network stack,
support for USB, Wi-Fi, Bluetooth, many kinds of storage media, good support for
multimedia devices, and so on. It ticks all the boxes.
Linux has been ported to a wide range of processor architectures, including some that
are very commonly found in SoC designs – Arm, MIPS, x86, and PowerPC.
Linux is open source, so you have the freedom to get the source code and modify it to
meet your needs. You, or someone working on your behalf, can create a board support
package for your particular SoC board or device. You can add protocols, features, and
technologies that may be missing from the mainline source code. You can remove
features that you don't need to reduce memory and storage requirements. Linux is
flexible.
Linux has an active community; in the case of the Linux kernel, very active. There is a
new release of the kernel every 8 to 10 weeks, and each release contains code from
more than 1,000 developers. An active community means that Linux is up to date and
supports current hardware, protocols, and standards.
Open source licenses guarantee that you have access to the source code. There is no
vendor tie-in.

For these reasons, Linux is an ideal choice for complex devices. But there are a few caveats
I should mention here. Complexity makes it harder to understand. Coupled with the fast-
moving development process and the decentralized structures of open source, you have to
put some effort into learning how to use it and to keep on re-learning as it changes. I hope
that this book will help in the process.

When not to choose Linux
Is Linux suitable for your project? Linux works well where the problem being solved
justifies the complexity. It is especially good where connectivity, robustness, and complex
user interfaces are required. However, it cannot solve every problem, so here are some
things to consider before you jump in:

Is your hardware up to the job? Compared to a traditional real-time operating system
(RTOS) such as VxWorks or QNX, Linux requires a lot more resources. It needs at
least a 32-bit processor and lots more memory. I will go into more detail in the section
on typical hardware requirements.
Do you have the right skill set? The early parts of a project, board bring-up, require
detailed knowledge of Linux and how it relates to your hardware. Likewise, when



debugging and tuning your application, you will need to be able to interpret the results.
If you don't have the skills in-house, you may want to outsource some of the work. Of
course, reading this book helps!
Is your system real-time? Linux can handle many real-time activities so long as 
you pay attention to certain details, which I will cover in detail in Chapter 21, 
Real-Time Programming.
Will your code require regulatory approval (medical, automotive, aerospace, and so
on)? The burden of regulatory verification and validation might make another OS a
better choice. Even if you do choose Linux for use in these environments, it may make
sense to purchase a commercially available distribution from a company that has
supplied Linux for existing products, like the one you are building.

Consider these points carefully. Probably the best indicator of success is to look around for
similar products that run Linux and see how they have done it; follow best practice.

Meeting the players
Where does open source software come from? Who writes it? In particular, how does this
relate to the key components of embedded development—the toolchain, bootloader, kernel,
and basic utilities found in the root filesystem?
The main players are as follows:

The open source community: This, after all, is the engine that generates the software
you are going to be using. The community is a loose alliance of developers, many of
whom are funded in some way, perhaps by a not-for-profit organization, an academic
institution, or a commercial company. They work together to further the aims of the
various projects. There are many of them—some small, some large. Some that we will
be making use of in the remainder of this book are Linux itself, U-Boot, BusyBox,
Buildroot, the Yocto Project, and the many projects under the GNU umbrella.
CPU architects: These are the organizations that design the CPUs we use. The
important ones here are Arm/Linaro (Arm Cortex-A), Intel (x86 and x86_64), SiFive
(RISC-V), and IBM (PowerPC). They implement or, at the very least, influence
support for the basic CPU architecture.
SoC vendors (Broadcom, Intel, Microchip, NXP, Qualcomm, TI, and many others):
They take the kernel and toolchain from the CPU architects and modify them to
support their chips. They also create reference boards: designs that are used by the
next level down to create development boards and working products.
Board vendors and OEMs: These people take the reference designs from SoC
vendors and build them in to specific products, for instance, set-top boxes or cameras,
or create more general-purpose development boards, such as those from Advantech
and Kontron. An important category are the cheap development boards such as



BeagleBoard/BeagleBone and Raspberry Pi that have created their own ecosystems of
software and hardware add-ons.
Commercial Linux vendors: Companies such as Siemens (Mentor), Timesys, and
Wind River offer commercial Linux distributions that have undergone strict regulatory
verification and validation across multiple industries (medical, automotive, aerospace,
and so on).

These form a chain, with your project usually at the end, which means that you do not have
a free choice of components. You cannot simply take the latest kernel from
https://www.kernel.org/, except in a few rare cases, because it does not have support for the
chip or board that you are using.
This is an ongoing problem with embedded development. Ideally, the developers at each
link in the chain would push their changes upstream, but they don't. It is not uncommon to
find a kernel that has many thousands of patches that are not merged. In addition, SoC
vendors tend to actively develop open source components only for their latest chips,
meaning that support for any chip more than a couple of years old will be frozen and not
receive any updates.
The consequence is that most embedded designs are based on old versions of software.
They do not receive security fixes, performance enhancements, or features that are in newer
versions. Problems such as Heartbleed (a bug in the OpenSSL libraries) and ShellShock (a
bug in the bash shell) go unfixed. I will talk more about this later in this chapter under the
topic of security.
What can you do about it? First, ask questions of your vendors (NXP, Texas Instruments,
and Xilinx, to name just a few): what is their update policy, how often do they revise kernel
versions, what is the current kernel version, what was the one before that, and what is their
policy for merging changes upstream? Some vendors are making great strides in this way.
You should prefer their chips.
Secondly, you can take steps to make yourself more self-sufficient. The chapters in Section
1 explain the dependencies in more detail and show you where you can help yourself. Don't
just take the package offered to you by the SoC or board vendor and use it blindly without
considering the alternatives.

Moving through the project life cycle
This book is divided into four sections that reflect the phases of a project. The phases are
not necessarily sequential. Usually, they overlap and you will need to jump back to revisit
things that were done previously. However, they are representative of a developer's
preoccupations as the project progresses:

Elements of Embedded Linux (Chapters 1 to 8) will help you set up the development
environment and create a working platform for the later phases. It is often referred to
as the board bring-up phase.

https://www.kernel.org/


System Architecture and Design Choices (Chapters 9 to 15) will help you to look at
some of the design decisions you will have to make concerning the storage of
programs and data, how to divide work between kernel device drivers and
applications, and how to initialize the system.
Writing Embedded Applications (Chapters 16 to 18) shows how to package and deploy
Python applications, make effective use of the Linux process and thread model, and
how to manage memory in a resource-constrained device.
Debugging and Optimizing Performance (Chapters 19 to 21) describes how to trace,
profile, and debug your code in both the applications and the kernel. The last chapter
explains how to design for real-time behavior when required.

Now, let's focus on the four basic elements of embedded Linux that comprise the first
section of the book.

The four elements of embedded Linux
Every project begins by obtaining, customizing, and deploying these four elements: the
toolchain, the bootloader, the kernel, and the root filesystem. This is the topic of the first
section of this book.

Toolchain: The compiler and other tools needed to create code for your 
target device.
Bootloader: The program that initializes the board and loads the Linux kernel.
Kernel: This is the heart of the system, managing system resources and interfacing
with hardware.
Root filesystem: Contains the libraries and programs that are run once the kernel has
completed its initialization.

Of course, there is also a fifth element, not mentioned here. That is the collection of
programs specific to your embedded application that make the device do whatever it is
supposed to do, be it weigh groceries, display movies, control a robot, or fly a drone.
Typically, you will be offered some or all of these elements as a package when you buy
your SoC or board. But, for the reasons mentioned in the preceding paragraph, they may not
be the best choices for you. I will give you the background to make the right selections in
the first eight chapters and I will introduce you to two tools that automate the whole process
for you: Buildroot and the Yocto Project.

Navigating open source
The components of embedded Linux are open source, so now is a good time to consider
what that means, why open sources work the way they do, and how this affects the often



proprietary embedded device you will be creating from it.

Licenses
When talking about open source, the word free is often used. People new to the subject
often take it to mean nothing to pay, and open source software licenses do indeed guarantee
that you can use the software to develop and deploy systems for no charge. However, the
more important meaning here is freedom, since you are free to obtain the source code,
modify it in any way you see fit, and redeploy it in other systems. These licenses give you
this right. Compare that with freeware licenses, which allow you to copy the binaries for no
cost but do not give you the source code, or other licenses that allow you to use the
software for free under certain circumstances, for example, for personal use, but not
commercial. These are not open source.
I will provide the following comments in the interest of helping you understand the
implications of working with open source licenses, but I would like to point out that I am an
engineer and not a lawyer. What follows is my understanding of the licenses and the way
they are interpreted.
Open source licenses fall broadly into two categories: copyleft licenses, such as the GNU
General Public License (GPL), and permissive licenses, such as the BSD and MIT
licenses.
The permissive licenses say, in essence, that you may modify the source code and use it in
systems of your own choosing so long as you do not modify the terms of the license in any
way. In other words, with that one restriction, you can do with it what you want, including
building it into possibly proprietary systems.
The GPL licenses are similar but have clauses that compel you to pass the rights to obtain
and modify the software on to your end users. In other words, you share your source code.
One option is to make it completely public by putting it onto a public server. Another is to
offer it only to your end users by means of a written offer to provide the code when
requested. The GPL goes further to say that you cannot incorporate GPL code into
proprietary programs. Any attempt to do so would make the GPL apply to the whole. In
other words, you cannot combine a GPL and proprietary code in one program. Aside from
the Linux kernel, the GNU Compiler Collection and GNU Debugger as well as many other
freely available tools associated with the GNU project fall under the umbrella of the GPL.
So, what about libraries? If they are licensed with the GPL, any program linked with them
becomes GPL also. However, most libraries are licensed under the GNU Lesser General
Public License (LGPL). If this is the case, you are allowed to link with them from a
proprietary program.

IMPORTANT NOTE
All of the preceding description relates specifically to GPL v2 and LGPL v2.1. I should
mention the latest versions of GPL v3 and LGPL v3. These are controversial, and I will
admit that I don't fully understand the implications. However, the intention is to ensure that



the GPL v3 and LGPL v3 components in any system can be replaced by the end user, which
is in the spirit of open source software for everyone.
The GPL v3 and LGPL v3 have their problems though. There are issues with security. If the
owner of a device has access to the system code, then so might an unwelcome intruder.
Often the defense is to have kernel images that are signed by an authority such as the
vendor, so that unauthorized updates are not possible. Is that an infringement of my right to
modify my device? Opinions differ.

IMPORTANT NOTE
The TiVo set-top box is an important part of this debate. It uses a Linux kernel, which is
licensed under GPL v2. TiVo have released the source code of their version of the kernel
and so comply with the license. TiVo also has a bootloader that will only load a kernel
binary that is signed by them. Consequently, you can build a modified kernel for a TiVo box,
but you cannot load it on the hardware. The Free Software Foundation (FSF) takes the
position that this is not in the spirit of open source software and refers to this procedure as
Tivoization. The GPL v3 and LGPL v3 were written to explicitly prevent this from
happening. Some projects, the Linux kernel in particular, have been reluctant to adopt the
GPL version 3 licenses because of the restrictions they would place on device
manufacturers.

Selecting hardware for embedded Linux
If you are designing or selecting hardware for an embedded Linux project, what do you
look out for?
First, a CPU architecture that is supported by the kernel—unless you plan to add a new
architecture yourself, of course! Looking at the source code for Linux 5.4, there are 25
architectures, each represented by a sub-directory in the arch/ directory. They are all 
32- or 64-bit architectures, most with an MMU, but some without. The ones most often
found in embedded devices are Arm, MIPS, PowerPC, and x86, each in 32 and 64-bit
variants, all of which have memory management units (MMUs).
Most of this book is written with this class of processor in mind. There is another group that
doesn't have an MMU and that runs a subset of Linux known as microcontroller Linux or
uClinux. These processor architectures include ARC (Argonaut RISC Core), Blackfin,
MicroBlaze, and Nios. I will mention uClinux from time to time, but I will not go into
detail because it is a rather specialized topic.
Second, you will need a reasonable amount of RAM. 16 MiB is a good minimum, although
it is quite possible to run Linux using half that. It is even possible to run Linux with 4 MiB
if you are prepared to go to the trouble of optimizing every part of the system. It may even
be possible to get lower, but there comes a point at which it is no longer Linux.
Third, there is non-volatile storage, usually flash memory. 8 MiB is enough for a simple
device such as a webcam or a simple router. As with RAM, you can create a workable
Linux system with less storage if you really want to, but the lower you go, the harder it



becomes. Linux has extensive support for flash storage devices, including raw NOR and
NAND flash chips, and managed flash in the form of SD cards, eMMC chips, USB flash
memory, and so on.
Fourth, a serial port is very useful, preferably a UART-based serial port. It does not have to
be fitted on production boards, but makes board bring-up, debugging, and development
much easier.
Fifth, you need some means of loading software when starting from scratch. Many
microcontroller boards are fitted with a Joint Test Action Group (JTAG) interface for this
purpose. Modern SoCs also have the ability to load boot code directly from removable
media, especially SD and micro SD cards, or serial interfaces such as UART or USB.
In addition to these basics, there are interfaces to the specific bits of hardware your device
needs to get its job done. Mainline Linux comes with open source drivers for many
thousands of different devices, and there are drivers (of variable quality) from the SoC
manufacturer and from the OEMs of third-party chips that may be included in the design,
but remember my comments on the commitment and ability of some manufacturers. As a
developer of embedded devices, you will find that you spend quite a lot of time evaluating
and adapting third-party code, if you have it, or liaising with the manufacturer if you don't.
Finally, you will have to write the device support for interfaces that are unique to the device
or find someone to do it for you.

Obtaining the hardware for this book
The examples in this book are intended to be generic, but to make them relevant and easy to
follow, I have had to choose specific hardware. I have chosen three exemplar devices: the
Raspberry Pi 4, the BeagleBone Black, and QEMU. The first is by far the most popular
Arm-based single board computer on the market. The second is a widely available and
cheap development board that can be used in serious embedded hardware. The third is a
machine emulator that can be used to create a range of systems that are typical of embedded
hardware. It was tempting to use QEMU exclusively, but, like all emulations, it is not quite
the same as the real thing. Using the Raspberry Pi 4 and BeagleBone Black, you have the
satisfaction of interacting with real hardware and seeing real LEDs flash. While the
BeagleBone Black is several years old now, it remains open source hardware (unlike the
Raspberry Pi). This means that the board design materials are freely available for anyone to
build a BeagleBone Black or derivative into their products.
In any case, I encourage you to try out as many of the examples as you can, using either of
these three platforms, or indeed any embedded hardware you may have to hand.

The Raspberry Pi 4
At the time of writing, the Raspberry Pi 4 Model B is the flagship tiny, dual-display,
desktop computer produced by the Raspberry Pi Foundation. Their website is 



https://raspberrypi.org/. The Pi 4's technical specs include the following:
A Broadcom BCM2711 1.5 GHz quad-core Cortex-A72 (Arm® v8) 64-bit SoC
2, 4, or 8 GiB DDR4 RAM
2.4 GHz and 5.0 GHz 802.11ac wireless, Bluetooth 5.0, BLE
A serial port for debug and development
A MicroSD slot, which can be used as the boot device
A USB-C connector that is used to power the board
2 × full size USB 3.0 and 2 × full size USB 2.0 host ports
A Gigabit Ethernet port
2 × micro-HDMI ports for video and audio output

In addition, there is a 40-pin expansion header for which there are a great variety of
daughter boards, known as HATs (Hardware Attached on Top), that allow you to adapt
the board to do many different things. However, you will not need any HATs for the
examples in this book. Instead, you will make use of the Pi 4's built-in Wi-Fi and Bluetooth
(which the BeagleBone Black lacks).
In addition to the board itself, you will require the following:

A 5V USB-C power supply capable of delivering 3 A or more
A USB to TTL serial cable with 3.3V logic-level pins like the Adafruit 954
A MicroSD card and a means of writing to it from your development PC or laptop,
which will be needed to load software onto the board
An Ethernet cable and a router to connect it to, as some of the examples require
network connectivity

Next is the BeagleBone Black.

The BeagleBone Black
The BeagleBone and the later BeagleBone Black are open hardware designs for a small,
credit card-sized development board produced by CircuitCo LLC. The main repository of
information is at https://beagleboard.org/. The main points of the specifications are as
follows:

A TI AM335x 1 GHz Arm® Cortex-A8 Sitara SoC
512 MiB DDR3 RAM
2 or 4 GiB 8-bit eMMC onboard flash storage
A serial port for debug and development
A MicroSD slot, which can be used as the boot device

https://raspberrypi.org/
https://beagleboard.org/


A Mini-USB OTG client/host port that can also be used to power the board
A full size USB 2.0 host port
A 10/100 Ethernet port
An HDMI port for video and audio output

In addition, there are two 46-pin expansion headers for which there are a great variety of
daughter boards, known as capes, which allow you to adapt the board to do many different
things. However, you do not need to fit any capes for the examples in this book.
In addition to the board itself, you will require the following:

A Mini-USB to USB-A cable (supplied with the board).
A serial cable that can interface with the 6-pin 3.3V TTL level signals provided by the
board. The BeagleBoard website has links to compatible cables.
A MicroSD card and a means of writing to it from your development PC or laptop,
which will be needed to load software onto the board.
An Ethernet cable and a router to connect it to, as some of the examples require
network connectivity.
A 5V power supply capable of delivering 1 A or more.

In addition to the above, Chapter 12, Prototyping with Breakout Boards, also requires 
the following:

A SparkFun model GPS-15193 Breakout board.
A Saleae Logic 8 logic analyzer. This apparatus will be used to probe pins for SPI
communications between the BeagleBone Black and NEO-M9N.

QEMU
QEMU is a machine emulator. It comes in a number of different flavors, each of which can
emulate a processor architecture and a number of boards built using that architecture. For
example, we have the following:

qemu-system-arm: 32-bit Arm
qemu-system-mips: MIPS
qemu-system-ppc: PowerPC
qemu-system-x86: x86 and x86_64

For each architecture, QEMU emulates a range of hardware, which you can see by using
the -machine help option. Each machine emulates most of the hardware that would
normally be found on that board. There are options to link hardware to local resources, such
as using a local file for the emulated disk drive.



Here is a concrete example:
$ qemu-system-arm -machine vexpress-a9 -m 256M -drive
file=rootfs.ext4,sd -net nic -net use -kernel zImage -dtb vexpress- v2p-
ca9.dtb -append "console=ttyAMA0,115200 root=/dev/mmcblk0" -serial stdio
-net nic,model=lan9118 -net tap,ifname=tap0

The options used in the preceding command line are as follows:
-machine vexpress-a9: Creates an emulation of an Arm Versatile Express
development board with a Cortex A-9 processor
-m 256M: Populates it with 256 MiB of RAM
-drive file=rootfs.ext4,sd: Connects the SD interface to the local file
rootfs.ext4 (which contains a filesystem image)
-kernel zImage: Loads the Linux kernel from the local file named zImage
-dtb vexpress-v2p- ca9.dtb: Loads the device tree from the local file vexpress-
v2p-ca9.dtb

-append "...": Appends this string as the kernel command line
-serial stdio: Connects the serial port to the terminal that launched QEMU, usually
so that you can log on to the emulated machine via the serial console
-net nic,model=lan9118: Creates a network interface
-net tap,ifname=tap0: Connects the network interface to the virtual network
interface, tap0

To configure the host side of the network, you need the tunctl command from the User
Mode Linux (UML) project; on Debian and Ubuntu, the package is named uml-utilites:

$ sudo tunctl -u $(whoami) -t tap0

This creates a network interface named tap0 that is connected to the network controller in
the emulated QEMU machine. You configure tap0 in exactly the same way as any other
interface.
All of these options are described in detail in the following chapters. I will be using
Versatile Express for most of my examples, but it should be easy to use a different machine
or architecture.

Provisioning your development environment
I have only used open source software, both for the development tools and the target
operating system and applications. I assume that you will be using Linux on your
development system. I tested all the host commands using Ubuntu 20.04 LTS, and so there
is a slight bias toward that particular version, but any modern Linux distribution is likely to
work just fine.



Summary
Embedded hardware will continue to get more complex, following the trajectory set by
Moore's Law. Linux has the power and the flexibility to make use of hardware in an
efficient way. Together we will learn how to harness that power so we can build robust
products that delight our users. This book will take you through the five phases of the
embedded project's life cycle, beginning with the four elements of embedded Linux.
The sheer variety of embedded platforms and the fast pace of development lead to isolated
pools of software. In many cases, you will become dependent on this software, especially
the Linux kernel that is provided by your SoC or board vendor, and, to a lesser extent, the
toolchain. Some SoC manufacturers are getting better at pushing their changes upstream
and the maintenance of these changes is getting easier. Despite these improvements,
selecting the right hardware for your embedded Linux project is still an exercise fraught
with peril. Open source license compliance is another topic you need to be aware when
building products atop the embedded Linux ecosystem.
In this chapter, you were introduced to the hardware and some of the software you will use
throughout this book (namely QEMU). Later on, we will examine some powerful tools that
can help you create and maintain the software for your device. We cover Buildroot and dig
deep into the Yocto Project. Before I describe these build tools, I will describe the four
elements of embedded Linux, which you can apply to all embedded Linux projects,
however they are created.
The next chapter is all about the first of these, the toolchain, which you need in order to
compile code for your target platform.



Chapter 2: Learning about Toolchains
The toolchain is the first element of embedded Linux and the starting point of your project.
You will use it to compile all the code that will run on your device. The choices you make
at this early stage will have a profound impact on the final outcome. Your toolchain should
be capable of making effective use of your hardware by using the optimum instruction set
for your processor. It should support the languages that you require and have a solid
implementation of the Portable Operating System Interface (POSIX) and other system
interfaces.
Your toolchain should remain constant throughout the project. In other words, once you
have chosen your toolchain, it is important to stick with it. Changing compilers and
development libraries in an inconsistent way during a project will lead to subtle bugs. That
being said, it is still best to update your toolchain when security flaws or bugs are found.
Obtaining a toolchain can be as simple as downloading and installing a TAR file, or it can
be as complex as building the whole thing from source code. In this chapter, I take the latter
approach, with the help of a tool called crosstool-NG, so that I can show you the details of
creating a toolchain. Later on, in Chapter 6, Selecting a Build System, I will switch to using
the toolchain generated by the build system, which is the more usual means of obtaining a
toolchain. When we get to Chapter 14, Starting with BusyBox runit, we'll save ourselves
some time by downloading a prebuilt Linaro toolchain to use with Buildroot.
In this chapter, we will cover the following topics:

Introducing toolchains
Finding a toolchain
Building a toolchain using the crosstool-NG tool
The anatomy of a toolchain
Linking with libraries – static and dynamic linking
The art of cross-compiling

Technical requirements
To follow along with the examples, make sure you have the following:

A Linux-based host system with autoconf, automake, bison, bzip2, cmake, flex, g++,
gawk, gcc, gettext, git, gperf, help2man, libncurses5-dev, libstdc++6, libtool,
libtool-bin, make, patch, python3-dev, rsync, texinfo, unzip, wget, and xz-utils
or their equivalents installed.

I recommend using Ubuntu 20.04 LTS or later since the exercises in this chapter were all
tested against that Linux distribution at the time of writing. Here is the command to install



all the required packages on Ubuntu 20.04 LTS:
$ sudo apt-get install autoconf automake bison bzip2 cmake \ flex g++
gawk gcc

gettext git gperf help2man libncurses5-dev libstdc++6 libtool \ libtool-
bin make

patch python3-dev rsync texinfo unzip wget xz-utils

All of the code for this chapter can be found in the Chapter02 folder from the book's
GitHub repository: https://github.com/PacktPublishing/Mastering-Embedded-Linux-
Programming-Third-Edition

Introducing toolchains
A toolchain is a set of tools that compiles source code into executables that can run on your
target device and includes a compiler, a linker, and runtime libraries. Initially, you need one
to build the other three elements of an embedded Linux system: the bootloader, the kernel,
and the root filesystem. It has to be able to compile code written in assembly, C, and C++
since these are the languages used in the base open source packages.
Usually, toolchains for Linux are based on components from the GNU project 
(http://www.gnu.org), and that is still true in the majority of cases at the time of writing.
However, over the past few years, the Clang compiler and the associated Low Level
Virtual Machine (LLVM) project (http://llvm.org) have progressed to the point that it is
now a viable alternative to a GNU toolchain. One major distinction between LLVM and
GNU-based toolchains is the licensing; LLVM has a BSD license while GNU has the GPL.
There are some technical advantages to Clang as well, such as faster compilation and better
diagnostics, but GNU GCC has the advantage of compatibility with the existing code base
and support for a wide range of architectures and operating systems. While it took some
years to get there, Clang can now compile all the components needed for embedded Linux
and is a viable alternative to GNU. To learn more about that, see
https://www.kernel.org/doc/html/latest/kbuild/llvm.html.
There is a good description of how to use Clang for cross-compilation at
https://clang.llvm.org/docs/CrossCompilation.html. If you would like to use it as part of an
embedded Linux build system, the EmbToolkit (https://embtoolkit.org) fully supports both
GNU and LLVM/Clang toolchains, and various people are working on using Clang with
Buildroot and the Yocto Project. I will cover embedded build systems in Chapter 6,
Selecting a Build System. Meanwhile, this chapter focuses on the GNU toolchain as it is
still the most popular and mature toolchain for Linux.
A standard GNU toolchain consists of three main components:

Binutils: A set of binary utilities including the assembler and the linker. It is available
at http://gnu.org/software/binutils.
GNU Compiler Collection (GCC): These are the compilers for C and other
languages, which, depending on the version of GCC, include C++, Objective-C,
Objective-C++, Java, Fortran, Ada, and Go. They all use a common backend that
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produces assembler code, which is fed to the GNU assembler. It is available at
http://gcc.gnu.org/.
C library: A standardized application program interface (API) based on the POSIX
specification, which is the main interface to the operating system kernel 
for applications. There are several C libraries to consider, as we shall see later on in
this chapter.

Along with these, you will need a copy of the Linux kernel headers, which contain
definitions and constants that are needed when accessing the kernel directly. Right now, you
need them to be able to compile the C library, but you will also need them later when
writing programs or compiling libraries that interact with particular Linux devices, for
example, to display graphics via the Linux frame buffer driver. This is not simply a
question of making a copy of the header files in the include directory of your kernel source
code. Those headers are intended for use in the kernel only and contain definitions that will
cause conflicts if used in their raw state to compile regular Linux applications.
Instead, you will need to generate a set of sanitized kernel headers, which I have illustrated
in Chapter 5, Building a Root Filesystem.
It is not usually crucial whether the kernel headers are generated from the exact version of
Linux you are going to be using or not. Since the kernel interfaces are always backward
compatible, it is only necessary that the headers are from a kernel that is the same as, or
older than, the one you are using on the target.
Most people would consider the GNU Debugger (GDB) to be part of the toolchain as well,
and it is usual that it is built at this point. I will talk about GDB in Chapter 19, Debugging
with GDB.
Now that we've talked about kernel headers and seen what the components of a toolchain
are, let's look at the different types of toolchains.

Types of toolchains
For our purposes, there are two types of toolchain:

Native: This toolchain runs on the same type of system (sometimes the same actual
system) as the programs it generates. This is the usual case for desktops and servers,
and it is becoming popular on certain classes of embedded devices. The Raspberry Pi
running Debian for ARM, for example, has self-hosted native compilers.
Cross: This toolchain runs on a different type of system than the target, allowing the
development to be done on a fast desktop PC and then loaded onto the embedded
target for testing.

Almost all embedded Linux development is done using a cross-development toolchain,
partly because most embedded devices are not well suited to program development since
they lack computing power, memory, and storage, but also because it keeps the host and
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target environments separate. The latter point is especially important when the host and the
target are using the same architecture, x86_64, for example. In this case, it is tempting to
compile natively on the host and simply copy the binaries to the target.
This works up to a point, but it is likely that the host distribution will receive updates more
often than the target, or that different engineers building code for the target will have
slightly different versions of the host development libraries. Over time, the development
and target systems will diverge, and you will violate the principle that the toolchain should
remain constant throughout the life of the project. You can make this approach work if you
ensure that the host and the target build environments are in lockstep with each other.
However, a much better approach is to keep the host and the target separate, and a cross
toolchain is the way to do that.
However, there is a counter argument in favor of native development. Cross development
creates the burden of cross compiling all the libraries and tools that you need for your
target. We will see later in the section titled The art of cross compiling that cross
development is not always simple because many open source packages are not designed to
be built in this way. Integrated build tools, including Buildroot and the Yocto Project, help
by encapsulating the rules to cross-compile a range of packages that you need in typical
embedded systems, but if you want to compile a large number of additional packages, then
it is better to natively compile them. For example, building a Debian distribution for the
Raspberry Pi or BeagleBone using a cross compiler would be very hard. Instead, they are
natively compiled.
Creating a native build environment from scratch is not easy. You would still need a cross
compiler at first to create the native build environment on the target, which you then use to
build the packages. Then, in order to perform the native build in a reasonable amount of
time, you would need a build farm of well-provisioned target boards, or you may be able to
use Quick EMUlator (QEMU) to emulate the target.
Meanwhile, in this chapter, I will focus on a more mainstream cross compiler environment,
which is relatively easy to set up and administer. We will start by looking at what
distinguishes one target CPU architecture from another.

CPU architectures
The toolchain has to be built according to the capabilities of the target CPU, which includes
the following:

CPU architecture: ARM, Microprocessor without Interlocked Pipelined Stages
(MIPS), x86_64, and so on.
Big- or little-endian operation: Some CPUs can operate in both modes, but the
machine code is different for each.
Floating point support: Not all versions of embedded processors implement a
hardware floating-point unit, in which case the toolchain has to be configured to call a
software floating-point library instead.



Application Binary Interface (ABI): The calling convention used for passing
parameters between function calls.

With many architectures, the ABI is constant across the family of processors. One notable
exception is ARM. The ARM architecture transitioned to the Extended Application
Binary Interface (EABI) in the late 2000s, resulting in the previous ABI being named the
Old Application Binary Interface (OABI). While the OABI is now obsolete, you'll
continue to see references to EABI. Since then, the EABI has split into two, based on the
way the floating-point parameters are passed.
The original EABI uses general-purpose (integer) registers, while the newer Extended
Application Binary Interface Hard-Float (EABIHF) uses floating point registers. The
EABIHF is significantly faster at floating-point operations, since it removes the need for
copying between integer and floating-point registers, but it is not compatible with CPUs
that do not have a floating-point unit. The choice, then, is between two incompatible ABIs;
you cannot mix and match the two, and so you have to decide at this stage.
GNU uses a prefix to the name of each tool in the toolchain, which identifies the various
combinations that can be generated. It consists of a tuple of three or four components
separated by dashes, as described here:

CPU: This is the CPU architecture, such as ARM, MIPS, or x86_64. If the CPU has
both endian modes, they may be differentiated by adding el for little-endian or eb for
big-endian. Good examples are little-endian MIPS, mipsel, and big-endian ARM,
armeb.
Vendor: This identifies the provider of the toolchain. Examples include buildroot,
poky, or just unknown. Sometimes it is left out altogether.
Kernel: For our purposes, it is always linux.
Operating system: A name for the user space component, which might be gnu or
musl. The ABI may be appended here as well, so for ARM toolchains, you may see
gnueabi, gnueabihf, musleabi, or musleabihf.

You can find the tuple used when building the toolchain by using the -dumpmachine option
of gcc. For example, you may see the following on the host computer:

$ gcc -dumpmachine

x86_64-linux-gnu

This tuple indicates a CPU of x86_64, a kernel of linux, and a user space of gnu.

IMPORTANT NOTE
When a native compiler is installed on a machine, it is normal to create links to each of the
tools in the toolchain with no prefixes, so that you can call the C compiler with the gcc
command.
Here is an example using a cross compiler:

$ mipsel-unknown-linux-gnu-gcc -dumpmachine

mipsel-unknown-linux-gnu



This tuple indicates a CPU of little-endian MIPS, an unknown vendor, a kernel of linux, and
a user space of gnu.

Choosing the C library
The programming interface to the Unix operating system is defined in the C language,
which is now defined by the POSIX standards. The C library is the implementation of that
interface; it is the gateway to the kernel for Linux programs, as shown in the following
diagram. Even if you are writing programs in another language, maybe Java or Python, the
respective runtime support libraries will have to call the C library eventually, as shown
here:

Figure 2.1 – C library

Whenever the C library needs the services of the kernel, it will use the kernel system call
interface to transition between user space and kernel space. It is possible to bypass the C
library by making the kernel system calls directly, but that is a lot of trouble and almost
never necessary.
There are several C libraries to choose from. The main options are as follows:

glibc: This is the standard GNU C library, available at https://gnu.org/software/libc. It
is big and, until recently, not very configurable, but it is the most complete
implementation of the POSIX API. The license is LGPL 2.1.
musl libc: This is available at https://musl.libc.org. The musl libc library is
comparatively new but has been gaining a lot of attention as a small and standards-
compliant alternative to GNU libc. It is a good choice for systems with a limited
amount of RAM and storage. It has an MIT license.
uClibc-ng: This is available at https://uclibc-ng.org. u is really a Greek mu character,
indicating that this is the microcontroller C library. It was first developed to work with
uClinux (Linux for CPUs without memory management units) but has since been
adapted to be used with full Linux. The uClibc-ng library is a fork of the original
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uClibc project (https://uclibc.org), which has unfortunately fallen into disrepair. Both
are licensed with LGPL 2.1.
eglibc: This is available at http://www.eglibc.org/home. Now obsolete, eglibc was a
fork of glibc with changes to make it more suitable for embedded usage. Among
other things, eglibc added configuration options and support for architectures not
covered by glibc, in particular the PowerPC e500 CPU core. The code base from
eglibc was merged back into glibc in version 2.20. The eglibc library is no longer
maintained.

So, which to choose? My advice is to use uClibc-ng only if you are using uClinux. If you
have a very limited amount of storage or RAM, then musl libc is a good choice,
otherwise, use glibc, as shown in this flow chart:

Figure 2.2 – Choosing a C library

Your choice of C library could limit your choice of toolchain since not all pre-built
toolchains support all C libraries.

Finding a toolchain
You have three choices for your cross-development toolchain: you may find a ready-built
toolchain that matches your needs; you can use one generated by an embedded build tool,
which is covered in Chapter 6, Selecting a Build System; or you can create one yourself as
described later in this chapter.
A pre-built cross toolchain is an attractive option, in that you only have to download and
install it, but you are limited to the configuration of that particular toolchain and you are
dependent on the person or organization you got it from.
Most likely, it will be one of these:
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An SoC or board vendor. Most vendors offer a Linux toolchain.
A consortium dedicated to providing system-level support for a given architecture. For
example, Linaro, (https://www.linaro.org) have pre-built toolchains for the ARM
architecture.
A third-party Linux tool vendor, such as Mentor Graphics, TimeSys, or MontaVista.
The cross-tool packages for your desktop Linux distribution. For example, Debian-
based distributions have packages for cross compiling for ARM, MIPS, and PowerPC
targets.
A binary SDK produced by one of the integrated embedded build tools. The Yocto
Project has some examples at http://downloads.yoctoproject.org/releases/yocto/yocto-
[version]/toolchain.
A link from a forum that you can't find anymore.

In all of these cases, you have to decide whether the pre-built toolchain on offer meets your
requirements. Does it use the C library you prefer? Will the provider give you updates for
security fixes and bugs, bearing in mind my comments on support and updates from
Chapter 1, Starting Out. If your answer is no to any of these, then you should consider
creating your own.
Unfortunately, building a toolchain is no easy task. If you truly want to do the whole thing
yourself, take a look at Cross Linux From Scratch (https://trac.clfs.org). There you will find
step-by-step instructions on how to create each component.
A simpler alternative is to use crosstool-NG, which encapsulates the process into a set of
scripts and has a menu-driven frontend. You still need a fair degree of knowledge, though,
just to make the right choices.
It is simpler still to use a build system such as Buildroot or the Yocto Project, since they
generate a toolchain as part of the build process. This is my preferred solution, as I have
shown in Chapter 6, Selecting a Build System.
With the ascendance of crosstool-NG, building your own toolchain is certainly a valid and
viable option. Let's look at how to do that next.

Building a toolchain using crosstool-NG
Some years ago, Dan Kegel wrote a set of scripts and makefiles for generating cross-
development toolchains and called it crosstool (http://kegel.com/crosstool/). In 2007, Yann
E. Morin used that base to create the next generation of crosstool, crosstool-NG
(https://crosstool-ng.github.io). Today it is by far the most convenient way to create a
standalone cross toolchain from source.
In this section, we will use crosstool-NG to build toolchains for the BeagleBone Black 
and QEMU.
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Installing crosstool-NG
Before you can build crosstool-NG from source, you will first need to install a native
toolchain and some build tools on your host machine. See the section on Technical
requirements at the beginning of this chapter for crosstool-NG's complete list of build and
runtime dependencies.
Next, get the current release from the crosstool-NG Git repository. In my examples, I have
used version 1.24.0. Extract it and create the frontend menu system, ct-ng, as shown in the
following commands:

$ git clone https://github.com/crosstool-ng/crosstool-ng.git

$ cd crosstool-ng

$ git checkout crosstool-ng-1.24.0

$ ./bootstrap

$ ./configure --prefix=${PWD}

$ make

$ make install

The --prefix=${PWD} option means that the program will be installed into the current
directory, which avoids the need for root permissions, as would be required if you were to
install it in the default location /usr/local/share.
We now have a working installation of crosstool-NG that we can use to build cross
toolchains with. Type bin/ct-ng to launch the crosstool menu.

Building a toolchain for BeagleBone Black
Crosstool-NG can build many different combinations of toolchains. To make the initial
configuration easier, it comes with a set of samples that cover many of the common use
cases. Use bin/ct-ng list-samples to generate the list.
The BeagleBone Black has a TI AM335x SoC, which contains an ARM Cortex A8 core
and a VFPv3 floating-point unit. Since the BeagleBone Black has plenty of RAM and
storage, we can use glibc as the C library. The closest sample is arm-cortex_a8-linux-
gnueabi.
You can see the default configuration by prefixing the name with show-, as 
demonstrated here:

$ bin/ct-ng show-arm-cortex_a8-linux-gnueabi

[G...]   arm-cortex_a8-linux-gnueabi

    Languages       : C,C++

    OS              : linux-4.20.8

    Binutils        : binutils-2.32

    Compiler        : gcc-8.3.0

    C library       : glibc-2.29

    Debug tools     : duma-2_5_15 gdb-8.2.1 ltrace-0.7.3 strace-4.26



    Companion libs  : expat-2.2.6 gettext-0.19.8.1 gmp-6.1.2 isl-0.20
libelf-0.8.13 libiconv-1.15 mpc-1.1.0 mpfr-4.0.2 ncurses-6.1 zlib-1.2.11

    Companion tools :

This is a close match with our requirements, except that it uses the eabi binary interface,
which passes floating-point arguments in integer registers. We would prefer to use hardware
floating point registers for that purpose because it would speed up function calls that have
float and double parameter types. You can change the configuration later, so for now you
should select this target configuration:

$ bin/ct-ng arm-cortex_a8-linux-gnueabi

At this point, you can review the configuration and make changes using the configuration
menu command menuconfig:

$ bin/ct-ng menuconfig

The menu system is based on the Linux kernel menuconfig, and so navigation of the user
interface will be familiar to anyone who has configured a kernel. If not, refer to Chapter 4,
Configuring and Building the Kernel, for a description of menuconfig.
There are three configuration changes that I would recommend you make at this point:

In Paths and misc options, disable Render the toolchain read-only 
(CT_PREFIX_DIR_RO).
In Target options | Floating point, select hardware (FPU) (CT_ARCH_FLOAT_HW).
In Target options, enter neon for Use specific FPU.

The first is necessary if you want to add libraries to the toolchain after it has been installed,
which I describe later, in the Linking with libraries section. The second selects the eabihf
binary interface for the reasons discussed earlier. The third is needed to build the Linux
kernel successfully. The names in parentheses are the configuration labels stored in the
configuration file. When you have made the changes, exit the menuconfig menu and save
the configuration as one does.
Now you can use crosstool-NG to get, configure, and build the components according to
your specification, by typing the following command:

$ bin/ct-ng build

The build will take about half an hour, after which you will find your toolchain is present in
~/x-tools/arm-cortex_a8-linux-gnueabihf.
Next, let's build a toolchain that targets QEMU.

Building a toolchain for QEMU
On the QEMU target, you will be emulating an ARM-versatile PB evaluation board that has
an ARM926EJ-S processor core, which implements the ARMv5TE instruction set. You
need to generate a crosstool-NG toolchain that matches the specification. The procedure is
very similar to the one for the BeagleBone Black.



You begin by running bin/ct-ng list-samples to find a good base configuration to work
from. There isn't an exact fit, so use a generic target, arm-unknown-linux-gnueabi. You
select it as shown, running distclean first to make sure that there are no artifacts left over
from a previous build:

$ bin/ct-ng distclean

$ bin/ct-ng arm-unknown-linux-gnueabi

As with the BeagleBone Black, you can review the configuration and make changes 
using the configuration menu command bin/ct-ng menuconfig. There is only one change
necessary:

In Paths and misc options, disable Render the toolchain read-only 
(CT_PREFIX_DIR_RO).

Now, build the toolchain with the command shown here:
$ bin/ct-ng build

As before, the build will take about half an hour. The toolchain will be installed in ~/x-
tools/arm-unknown-linux-gnueabi.
You will need a working cross toolchain to complete the exercises in the next section.

Anatomy of a toolchain
To get an idea of what is in a typical toolchain, I want to examine the crosstool-NG
toolchain you have just created. The examples use the ARM Cortex A8 toolchain created
for the BeagleBone Black, which has the prefix arm-cortex_a8-linux-gnueabihf-. If you
built the ARM926EJ-S toolchain for the QEMU target, then the prefix will be arm-
unknown-linux-gnueabi instead.
The ARM Cortex A8 toolchain is in the directory ~/x-tools/arm-cortex_a8-linux-
gnueabihf/bin. In there, you will find the cross compiler, arm-cortex_a8-linux-

gnueabihf-gcc. To make use of it, you need to add the directory to your path using the
following command:

$ PATH=~/x-tools/arm-cortex_a8-linux-gnueabihf/bin:$PATH

Now you can take a simple helloworld program, which in the C language looks like this:
#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[])

{

    printf ("Hello, world!\n");

    return 0;

}

You compile it like this:
$ arm-cortex_a8-linux-gnueabihf-gcc helloworld.c -o helloworld



You can confirm that it has been cross-compiled by using the file command to print the
type of the file:

$ file helloworld

helloworld: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV),
dynamically linked, interpreter /lib/ld-linux-armhf.so.3, for GNU/Linux
4.20.8, with debug_info, not stripped

Now that you've verified that your cross compiler works, let's take a closer look at it.

Finding out about your cross compiler
Imagine that you have just received a toolchain and that you would like to know more about
how it was configured. You can find out a lot by querying gcc. For example, to find the
version, you use --version:

$ arm-cortex_a8-linux-gnueabihf-gcc --version

arm-cortex_a8-linux-gnueabihf-gcc (crosstool-NG 1.24.0) 8.3.0

Copyright (C) 2018 Free Software Foundation, Inc.

This is free software; see the source for copying conditions.  There is
NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

To find how it was configured, use -v:
$ arm-cortex_a8-linux-gnueabihf-gcc -v

Using built-in specs.

COLLECT_GCC=arm-cortex_a8-linux-gnueabihf-gcc

COLLECT_LTO_WRAPPER=/home/frank/x-tools/arm-cortex_a8-linux-
gnueabihf/libexec/gcc/arm-cortex_a8-linux-gnueabihf/8.3.0/lto-wrapper

Target: arm-cortex_a8-linux-gnueabihf

Configured with: /home/frank/crosstool-ng/.build/arm-cortex_a8-linux-
gnueabihf/src/gcc/configure --build=x86_64-build_pc-linux-gnu --
host=x86_64-build_pc-linux-gnu --target=arm-cortex_a8-linux-gnueabihf --
prefix=/home/frank/x-tools/arm-cortex_a8-linux-gnueabihf --with-
sysroot=/home/frank/x-tools/arm-cortex_a8-linux-gnueabihf/arm-cortex_a8-
linux-gnueabihf/sysroot --enable-languages=c,c++ --with-cpu=cortex-a8 --
with-float=hard --with-pkgversion='crosstool-NG 1.24.0' --enable-
__cxa_atexit --disable-libmudflap --disable-libgomp --disable-libssp --
disable-libquadmath --disable-libquadmath-support --disable-libsanitizer
--disable-libmpx --with-gmp=/home/frank/crosstool-ng/.build/arm-
cortex_a8-linux-gnueabihf/buildtools --with-mpfr=/home/frank/crosstool-
ng/.build/arm-cortex_a8-linux-gnueabihf/buildtools --with-
mpc=/home/frank/crosstool-ng/.build/arm-cortex_a8-linux-
gnueabihf/buildtools --with-isl=/home/frank/crosstool-ng/.build/arm-
cortex_a8-linux-gnueabihf/buildtools --enable-lto --with-host-
libstdcxx='-static-libgcc -Wl,-Bstatic,-lstdc++,-Bdynamic -lm' --enable-
threads=posix --enable-target-optspace --enable-plugin --enable-gold --
disable-nls --disable-multilib --with-local-prefix=/home/frank/x-
tools/arm-cortex_a8-linux-gnueabihf/arm-cortex_a8-linux-
gnueabihf/sysroot --enable-long-long

Thread model: posix

gcc version 8.3.0 (crosstool-NG 1.24.0)



There is a lot of output there, but the interesting things to note are the following:
--with-sysroot=/home/frank/x-tools/arm-cortex_a8-linux-gnueabihf/arm-

cortex_a8-linux-gnueabihf/sysroot: This is the default sysroot directory; see the
following section for an explanation.
--enable-languages=c,c++: Using this, we have both C and C++ 
languages enabled.
--with-cpu=cortex-a8: The code is generated for an ARM Cortex A8 core.
--with-float=hard: Generates opcodes for the floating-point unit and uses the VFP
registers for parameters.
--enable-threads=posix: This enables the POSIX threads.

These are the default settings for the compiler. You can override most of them on the gcc
command line. For example, if you want to compile for a different CPU, you can override
the configured setting, --with-cpu, by adding -mcpu to the command line, as follows:

$ arm-cortex_a8-linux-gnueabihf-gcc -mcpu=cortex-a5 \ helloworld.c \

-o helloworld

You can print out the range of architecture-specific options available using --target-help,
as follows:

$ arm-cortex_a8-linux-gnueabihf-gcc --target-help

You may be wondering whether it matters that you get the configuration exactly right at this
point, since you can always change it as shown here. The answer depends on the way you
anticipate using it. If you plan to create a new toolchain for each target, then it makes sense
to set everything up at the beginning, because it will reduce the risk of getting it wrong later
on. Jumping ahead a little to Chapter 6, Selecting a Build System, I call this the Buildroot
philosophy. If, on the other hand, you want to build a toolchain that is generic and you are
prepared to provide the correct settings when you build for a particular target, then you
should make the base toolchain generic, which is the way the Yocto Project handles things.
The preceding examples follow the Buildroot philosophy.

The sysroot, library, and header files
The toolchain sysroot is a directory that contains subdirectories for libraries, header files,
and other configuration files. It can be set when the toolchain is configured through --
with-sysroot=, or it can be set on the command line using --sysroot=. You can see the
location of the default sysroot by using -print-sysroot:

$ arm-cortex_a8-linux-gnueabihf-gcc -print-sysroot

/home/frank/x-tools/arm-cortex_a8-linux-gnueabihf/arm-cortex_a8-linux-
gnueabihf/sysroot

You will find the following subdirectories in sysroot:
lib: Contains the shared objects for the C library and the dynamic linker/loader, ld-
linux



usr/lib: The static library archive files for the C library, and any other libraries that
may be installed subsequently
usr/include: Contains the headers for all the libraries
usr/bin: Contains the utility programs that run on the target, such as the 
ldd command
usr/share: Used for localization and internationalization
sbin: Provides the ldconfig utility, used to optimize library loading paths

Plainly, some of these are needed on the development host to compile programs, and others,
for example, the shared libraries and ld-linux, are needed on the target at runtime.

Other tools in the toolchain
Below is a list of commands to invoke the various other components of a GNU toolchain,
together with a brief description:

addr2line: Converts program addresses into filenames and numbers by reading the
debug symbol tables in an executable file. It is very useful when decoding addresses
printed out in a system crash report.
ar: The archive utility is used to create static libraries.
as: This is the GNU assembler.
c++filt: This is used to demangle C++ and Java symbols.
cpp: This is the C preprocessor and is used to expand #define, #include, and other
similar directives. You seldom need to use this by itself.
elfedit: This is used to update the ELF header of the ELF files.
g++: This is the GNU C++ frontend, which assumes that source files contain 
C++ code.
gcc: This is the GNU C frontend, which assumes that source files contain C code.
gcov: This is a code coverage tool.
gdb: This is the GNU debugger.
gprof: This is a program profiling tool.
ld: This is the GNU linker.
nm: This lists symbols from object files.
objcopy: This is used to copy and translate object files.
objdump: This is used to display information from object files.
ranlib: This creates or modifies an index in a static library, making the linking stage
faster.



readelf: This displays information about files in ELF object format.
size: This lists section sizes and the total size.
strings: This displays strings of printable characters in files.
strip: This is used to strip an object file of debug symbol tables, thus making it
smaller. Typically, you would strip all the executable code that is put onto the target.

We will now switch gears from command-line tools and return to the topic of the C library.

Looking at the components of the C library
The C library is not a single library file. It is composed of four main parts that together
implement the POSIX API:

libc: The main C library that contains the well-known POSIX functions such as
printf, open, close, read, write, and so on
libm: Contains math functions such as cos, exp, and log
libpthread: Contains all the POSIX thread functions with names beginning 
with pthread_
librt: Has the real-time extensions to POSIX, including shared memory and
asynchronous I/O

The first one, libc, is always linked in but the others have to be explicitly linked with the -
l option. The parameter to -l is the library name with lib stripped off. For example, a
program that calculates a sine function by calling sin() would be linked with libm using -
lm:

$ arm-cortex_a8-linux-gnueabihf-gcc myprog.c -o myprog -lm

You can verify which libraries have been linked in this or any other program by using the
readelf command:

$ arm-cortex_a8-linux-gnueabihf-readelf -a myprog | grep "Shared
library"

0x00000001 (NEEDED)               Shared library: [libm.so.6]

0x00000001 (NEEDED)               Shared library: [libc.so.6]

Shared libraries need a runtime linker, which you can expose using this:
$ arm-cortex_a8-linux-gnueabihf-readelf -a myprog | grep "program
interpreter"

    [Requesting program interpreter: /lib/ld-linux-armhf.so.3]

This is so useful that I have a script file named list-libs, which you will find in the book
code archive in MELP/list-libs. It contains the following commands:

#!/bin/sh

${CROSS_COMPILE}readelf -a $1 | grep "program interpreter"

${CROSS_COMPILE}readelf -a $1 | grep "Shared library"



There are other library files we can link to other than the four components of the C library.
We will look at how to do that in the next section.

Linking with libraries – static and dynamic
linking
Any application you write for Linux, whether it be in C or C++, will be linked with the
libc C library. This is so fundamental that you don't even have to tell gcc or g++ to do it
because it always links libc. Other libraries that you may want to link with have to be
explicitly named through the -l option.
The library code can be linked in two different ways: statically, meaning that all the library
functions your application calls and their dependencies are pulled from the library archive
and bound into your executable; and dynamically, meaning that references to the library
files and functions in those files are generated in the code but the actual linking is done
dynamically at runtime. You will find the code for the examples that follow in the book
code archive in MELP/Chapter02/library.
We'll start with static linking.

Static libraries
Static linking is useful in a few circumstances. For example, if you are building a small
system that consists of only BusyBox and some script files, it is simpler to link BusyBox
statically and avoid having to copy the runtime library files and linker. It will also be
smaller because you only link in the code that your application uses rather than supplying
the entire C library. Static linking is also useful if you need to run a program before the
filesystem that holds the runtime libraries is available.
You can link all the libraries statically by adding -static to the command line:

$ arm-cortex_a8-linux-gnueabihf-gcc -static helloworld.c -o helloworld-
static

You will note that the size of the binary increases dramatically:
$ ls -l

total 4060

-rwxrwxr-x 1 frank frank   11816 Oct 23 15:45 helloworld

-rw-rw-r-- 1 frank frank     123 Oct 23 15:35 helloworld.c

-rwxrwxr-x 1 frank frank 4140860 Oct 23 16:00 helloworld-static

Static linking pulls code from a library archive, usually named lib[name].a. In the
preceding case, it is libc.a, which is in [sysroot]/usr/lib:

$ export SYSROOT=$(arm-cortex_a8-linux-gnueabihf-gcc -print-sysroot)

$ cd $SYSROOT

$ ls -l usr/lib/libc.a



-rw-r--r-- 1 frank frank 31871066 Oct 23 15:16 usr/lib/libc.a

Note that the syntax export SYSROOT=$(arm-cortex_a8-linux-gnueabihf-gcc -print-
sysroot) places the path to the sysroot in the shell variable, SYSROOT, which makes the
example a little clearer.
Creating a static library is as simple as creating an archive of object files using the ar
command. If I have two source files named test1.c and test2.c, and I want to create a
static library named libtest.a, then I would do the following:

$ arm-cortex_a8-linux-gnueabihf-gcc -c test1.c

$ arm-cortex_a8-linux-gnueabihf-gcc -c test2.c

$ arm-cortex_a8-linux-gnueabihf-ar rc libtest.a test1.o test2.o

$ ls -l

total 24

-rw-rw-r-- 1 frank frank 2392 Oct 9 09:28 libtest.a

-rw-rw-r-- 1 frank frank 116 Oct 9 09:26 test1.c

-rw-rw-r-- 1 frank frank 1080 Oct 9 09:27 test1.o

-rw-rw-r-- 1 frank frank 121 Oct 9 09:26 test2.c

-rw-rw-r-- 1 frank frank 1088 Oct 9 09:27 test2.o

Then I could link libtest into my helloworld program, using this:
$ arm-cortex_a8-linux-gnueabihf-gcc helloworld.c -ltest \

-L../libs -I../libs -o helloworld

Now let's rebuild the same program using dynamic linking.

Shared libraries
A more common way to deploy libraries is as shared objects that are linked at runtime,
which makes more efficient use of storage and system memory, since only one copy of the
code needs to be loaded. It also makes it easy to update the library files without having to
relink all the programs that use them.
The object code for a shared library must be position-independent, so that the runtime
linker is free to locate it in memory at the next free address. To do this, add the -fPIC
parameter to gcc, and then link it using the -shared option:

$ arm-cortex_a8-linux-gnueabihf-gcc -fPIC -c test1.c

$ arm-cortex_a8-linux-gnueabihf-gcc -fPIC -c test2.c

$ arm-cortex_a8-linux-gnueabihf-gcc -shared -o libtest.so test1.o
test2.o

This creates the shared library, libtest.so. To link an application with this library, you add
-ltest, exactly as in the static case mentioned in the preceding section, but this time the
code is not included in the executable. Instead, there is a reference to the library that the
runtime linker will have to resolve:

$ arm-cortex_a8-linux-gnueabihf-gcc helloworld.c -ltest \

-L../libs -I../libs -o helloworld



$ MELP/list-libs helloworld

    [Requesting program interpreter: /lib/ld-linux-armhf.so.3]

0x00000001 (NEEDED)            Shared library: [libtest.so.6]

0x00000001 (NEEDED)            Shared library: [libc.so.6]

The runtime linker for this program is /lib/ld-linux-armhf.so.3, which must be present
in the target's filesystem. The linker will look for libtest.so in the default search path:
/lib and /usr/lib. If you want it to look for libraries in other directories as well, you can
place a colon-separated list of paths in the LD_LIBRARY_PATH shell variable:

$ export LD_LIBRARY_PATH=/opt/lib:/opt/usr/lib

Because shared libraries are separate from the executables they link to, we need to be aware
of their versions when deploying them.
Understanding shared library version numbers
One of the benefits of shared libraries is that they can be updated independently of the
programs that use them.
Library updates are of two types:

Those that fix bugs or add new functions in a backward-compatible way
Those that break compatibility with existing applications

GNU/Linux has a versioning scheme to handle both these cases.
Each library has a release version and an interface number. The release version is simply a
string that is appended to the library name; for example, the JPEG image library libjpeg is
currently at release 8.2.2 and so the library is named libjpeg.so.8.2.2. There is a
symbolic link named libjpeg.so to libjpeg.so.8.2.2, so that when you compile a
program with -ljpeg, you link with the current version. If you install version 8.2.3, the
link is updated, and you will link with that one instead.
Now suppose that version 9.0.0 comes along and that breaks the backward compatibility.
The link from libjpeg.so now points to libjpeg.so.9.0.0, so that any new programs are
linked with the new version, possibly throwing compile errors when the interface to
libjpeg changes, which the developer can fix.
Any programs on the target that are not recompiled are going to fail in some way, because
they are still using the old interface. This is where an object known as the soname helps.
The soname encodes the interface number when the library was built and is used by the
runtime linker when it loads the library. It is formatted as <library name>.so.<interface
number>. For libjpeg.so.8.2.2, the soname is libjpeg.so.8 because the interface
number when that libjpeg shared library was built is 8:

$ readelf -a /usr/lib/x86_64-linux-gnu/libjpeg.so.8.2.2 \

| grep SONAME

0x000000000000000e (SONAME)    Library soname: [libjpeg.so.8]

Any program compiled with it will request libjpeg.so.8 at runtime, which will be a
symbolic link on the target to libjpeg.so.8.2.2. When version 9.0.0 of libjpeg is
installed, it will have a soname of libjpeg.so.9, and so it is possible to have two



incompatible versions of the same library installed on the same system. Programs that were
linked with libjpeg.so.8.*.* will load libjpeg.so.8, and those linked with
libjpeg.so.9.*.* will load libjpeg.so.9.
This is why, when you look at the directory listing of /usr/lib/x86_64-linux-

gnu/libjpeg*, you find these four files:
libjpeg.a: This is the library archive used for static linking.
libjpeg.so -> libjpeg.so.8.2.2: This is a symbolic link, used for dynamic linking.
libjpeg.so.8 -> libjpeg.so.8.2.2: This is a symbolic link, used when loading the
library at runtime.
libjpeg.so.8.2.2: This is the actual shared library, used at both compile time and
runtime.

The first two are only needed on the host computer for building and the last two are needed
on the target at runtime.
While you can invoke the various GNU cross-compilation tools directly from the command
line, this technique does not scale beyond toy examples such as helloworld. To really be
effective at cross-compiling, we need to combine a cross toolchain with a build system.

The art of cross-compiling
Having a working cross toolchain is the starting point of a journey, not the end of it. At
some point, you will want to begin cross-compiling the various tools, applications, and
libraries that you need on your target. Many of them will be open source packages, each of
which has its own method of compiling and its own peculiarities.
There are some common build systems, including the following:

Pure makefiles, where the toolchain is usually controlled by the make variable
CROSS_COMPILE

The GNU build system known as Autotools
CMake (https://cmake.org)

Both Autotools and makefiles are needed to build even a basic embedded Linux system.
CMake is cross-platform and has seen increased adoption over the years especially among
the C++ community. In this section, we will cover all three build tools.

Simple makefiles
Some important packages are very simple to cross-compile, including the Linux kernel, the
U-Boot bootloader, and BusyBox. For each of these, you only need to put the toolchain

https://cmake.org/


prefix in the make variable CROSS_COMPILE, for example, arm-cortex_a8-linux-gnueabi-.
Note the trailing dash -.
So, to compile BusyBox, you would type this:

$ make CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf-

Or, you can set it as a shell variable:
$ export CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf-

$ make

In the case of U-Boot and Linux, you also have to set the make variable ARCH to one of the
machine architectures they support, which I will cover in Chapter 3, All About Bootloaders,
and Chapter 4, Configuring and Building the Kernel.
Both Autotools and CMake can generate makefiles. Autotools only generates makefiles
whereas CMake supports other ways of building projects depending on which 
platform(s) we are targeting (strictly Linux in our case). Let's look at cross-compiling 
with Autotools first.

Autotools
The name Autotools refers to a group of tools that are used as the build system in many
open source projects. The components, together with the appropriate project pages, are as
follows:

GNU Autoconf (https://www.gnu.org/software/autoconf/autoconf.html)
GNU Automake (https://www.gnu.org/savannah-checkouts/gnu/automake/)
GNU Libtool (https://www.gnu.org/software/libtool/libtool.html)
Gnulib (https://www.gnu.org/software/gnulib/)

The role of Autotools is to smooth over the differences between the different types of
systems that the package may be compiled for, accounting for different versions of
compilers, different versions of libraries, different locations of header files, and
dependencies with other packages.
Packages that use Autotools come with a script named configure that checks dependencies
and generates makefiles according to what it finds. The configure script may also give you
the opportunity to enable or disable certain features. You can find the options on offer by
running ./configure --help.
To configure, build and install a package for the native operating system, you would
typically run the following three commands:

$ ./configure

$ make

$ sudo make install

Autotools is able to handle cross-development as well. You can influence the behavior of
the configured script by setting these shell variables:

https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/gnulib/


CC: The C compiler command.
CFLAGS: Additional C compiler flags.
CXX: The C++ compiler command.
CXXFLAGS: Additional C++ compiler flags.
LDFLAGS: Additional linker flags; for example, if you have libraries in a non-standard
directory <lib dir>, you would add it to the library search path 
by adding -L<lib dir>.
LIBS: Contains a list of additional libraries to pass to the linker; for instance, 
-lm for the math library.
CPPFLAGS: Contains C/C++ preprocessor flags; for example, you would add -
I<include dir> to search for headers in a non-standard directory 
<include dir>.

CPP: The C preprocessor to use.

Sometimes it is sufficient to set only the CC variable, as follows:
$ CC=arm-cortex_a8-linux-gnueabihf-gcc ./configure

At other times, that will result in an error like this:
[…]

checking for suffix of executables...

checking whether we are cross compiling... configure: error: in
'/home/frank/sqlite-autoconf-3330000':

configure: error: cannot run C compiled programs.

If you meant to cross compile, use '--host'.

See 'config.log' for more details

The reason for the failure is that configure often tries to discover the capabilities of the
toolchain by compiling snippets of code and running them to see what happens, which
cannot work if the program has been cross-compiled.

IMPORTANT NOTE
Pass --host=<host> to configure when you are cross-compiling so that configure
searches your system for the cross-compiling toolchain targeting the specified <host>
platform. That way, configure does not try to run snippets of non-native code as part of the
configuration step.
Autotools understands three different types of machines that may be involved when
compiling a package:

Build: The computer that builds the package, which defaults to the current machine.
Host: The computer the program will run on. For a native compile, this is left blank
and it defaults to be the same computer as Build. When you are cross-compiling, set it
to be the tuple of your toolchain.
Target: The computer the program will generate code for. You would set this when
building a cross compiler.



So, to cross-compile, you just need to override the host, as follows:
$ CC=arm-cortex_a8-linux-gnueabihf-gcc \

./configure --host=arm-cortex_a8-linux-gnueabihf

One final thing to note is that the default install directory is <sysroot>/usr/local/*. 
You would usually install it in <sysroot>/usr/* so that the header files and libraries would
be picked up from their default locations.
The complete command to configure a typical Autotools package is as follows:

$ CC=arm-cortex_a8-linux-gnueabihf-gcc \

./configure --host=arm-cortex_a8-linux-gnueabihf --prefix=/usr

Let's dive deeper into Autotools and use it to cross-compile a popular library.
An example – SQLite
The SQLite library implements a simple relational database and is quite popular on
embedded devices. You begin by getting a copy of SQLite:

$ wget http://www.sqlite.org/2020/sqlite-autoconf-3330000.tar.gz

$ tar xf sqlite-autoconf-3330000.tar.gz

$ cd sqlite-autoconf-3330000

Next, run the configure script:
$ CC=arm-cortex_a8-linux-gnueabihf-gcc \

./configure --host=arm-cortex_a8-linux-gnueabihf --prefix=/usr

That seems to work! If it had failed, there would be error messages printed to the Terminal
and recorded in config.log. Note that several makefiles have been created, so now you can
build it:

$ make

Finally, you install it into the toolchain directory by setting the make variable DESTDIR. If
you don't, it will try to install it into the host computer's /usr directory, which is not what
you want:

$ make DESTDIR=$(arm-cortex_a8-linux-gnueabihf-gcc -print-sysroot)
install

You may find that the final command fails with a file permissions error. A crosstool-NG
toolchain is read-only by default, which is why it is useful to set CT_PREFIX_DIR_RO to y
when building it. Another common problem is that the toolchain is installed in a system
directory, such as /opt or /usr/local. In that case, you will need root permissions when
running the install.
After installing, you should find that various files have been added to your toolchain:

<sysroot>/usr/bin: sqlite3: This is a command-line interface for SQLite that you
can install and run on the target.
<sysroot>/usr/lib: libsqlite3.so.0.8.6, libsqlite3.so.0, libsqlite3.so,
libsqlite3.la, libsqlite3.a: These are the shared 
and static libraries.



<sysroot>/usr/lib/pkgconfig: sqlite3.pc: This is the package configuration file,
as described in the following section.
<sysroot>/usr/lib/include: sqlite3.h, sqlite3ext.h: These are the header files.
<sysroot>/usr/share/man/man1: sqlite3.1: This is the manual page.

Now you can compile programs that use sqlite3 by adding -lsqlite3 at the 
link stage:

$ arm-cortex_a8-linux-gnueabihf-gcc -lsqlite3 sqlite-test.c -o sqlite-
test

Here, sqlite-test.c is a hypothetical program that calls SQLite functions. Since sqlite3
has been installed into the sysroot, the compiler will find the header and library files
without any problem. If they had been installed elsewhere, you would have had to add -
L<lib dir> and -I<include dir>.
Naturally, there will be runtime dependencies as well, and you will have to install 
the appropriate files into the target directory as described in Chapter 5, Building a 
Root Filesystem.
In order to cross-compile a library or package, its dependencies first need to be 
cross-compiled. Autotools relies on a utility called pkg-config to gather vital information
about packages cross-compiled by Autotools.

Package configuration
Tracking package dependencies is quite complex. The package configuration utility pkg-
config (https://www.freedesktop.org/wiki/Software/pkg-config/) helps track which
packages are installed and which compile flags each package needs by keeping a database
of Autotools packages in [sysroot]/usr/lib/pkgconfig. For instance, the one for
SQLite3 is named sqlite3.pc and contains essential information needed by other packages
that need to make use of it:

$ cat $(arm-cortex_a8-linux-gnueabihf-gcc -print-
sysroot)/usr/lib/pkgconfig/sqlite3.pc

# Package Information for pkg-config

prefix=/usr

exec_prefix=${prefix}

libdir=${exec_prefix}/lib

includedir=${prefix}/include

Name: SQLite

Description: SQL database engine

Version: 3.33.0

Libs: -L${libdir} -lsqlite3

Libs.private: -lm -ldl -lpthread

Cflags: -I${includedir}

https://www.freedesktop.org/wiki/Software/pkg-config/


You can use pkg-config to extract information in a form that you can feed straight to gcc.
In the case of a library like libsqlite3, you want to know the library name (--libs) and
any special C flags (--cflags):

$ pkg-config sqlite3 --libs --cflags

Package sqlite3 was not found in the pkg-config search path.

Perhaps you should add the directory containing 'sqlite3.pc'

to the PKG_CONFIG_PATH environment variable

No package 'sqlite3' found

Oops! That failed because it was looking in the host's sysroot and the development
package for libsqlite3 has not been installed on the host. You need to point it at the
sysroot of the target toolchain by setting the PKG_CONFIG_LIBDIR shell variable:

$ export PKG_CONFIG_LIBDIR=$(arm-cortex_a8-linux-gnueabihf-gcc \

-print-sysroot)/usr/lib/pkgconfig

$ pkg-config sqlite3 --libs --cflags

-lsqlite3

Now the output is -lsqlite3. In this case, you knew that already, but generally you
wouldn't, so this is a valuable technique. The final commands to compile would be 
the following:

$ export PKG_CONFIG_LIBDIR=$(arm-cortex_a8-linux-gnueabihf-gcc \

-print-sysroot)/usr/lib/pkgconfig

$ arm-cortex_a8-linux-gnueabihf-gcc $(pkg-config sqlite3 --cflags --
libs) \

sqlite-test.c -o sqlite-test

Many configure scripts read the information generated by pkg-config. This can lead to
errors when cross-compiling as we shall see next.

Problems with cross-compiling
sqlite3 is a well-behaved package and cross-compiles nicely, but not all packages are the
same. Typical pain points include the following:

Home-grown build systems for libraries such as zlib that have a configure script that
does not behave like the Autotools configure described in the previous section
Configure scripts that read pkg-config information, headers, and other files from the
host, disregarding the --host override
Scripts that insist on trying to run cross-compiled code

Each case requires careful analysis of the error and additional parameters to the configure
script to provide the correct information, or patches to the code to avoid the problem
altogether. Bear in mind that one package may have many dependencies, especially with
programs that have a graphical interface using GTK or Qt, or that handle multimedia



content. As an example, mplayer, which is a popular tool for playing multimedia content,
has dependencies on over 100 libraries. It would take weeks of effort to build them all.
Therefore, I would not recommend manually cross-compiling components for the target in
this way, except when there is no alternative or the number of packages to build is small. A
much better approach is to use a build tool such as Buildroot or the Yocto Project or avoid
the problem altogether by setting up a native build environment for your target architecture.
Now you can see why distributions such as Debian are always compiled natively.

CMake
CMake is more of a meta build system in the sense that it relies on an underlying platform's
native tools to build software. On Windows, CMake can generate project files for Microsoft
Visual Studio and on macOS, it can generate project files for Xcode. Integrating with the
principal IDEs for each of the major platforms is no simple task and explains the success of
CMake as the leading cross-platform build system solution. CMake also runs on Linux,
where it can be used in conjunction with a cross-compiling toolchain of your choice.
To configure, build, and install a package for a native Linux operating system, run the
following commands:

$ cmake .

$ make

$ sudo make install

On Linux, the native build tool is GNU make so CMake generates makefiles by default for
us to build with. Oftentimes, we want to perform out-of-source builds so that object files
and other build artifacts remain separate from source files.
To configure an out-of-source build in a subdirectory named _build, run the 
following commands:

$ mkdir _build

$ cd _build

$ cmake ..

This will generate the makefiles inside a _build subdirectory within the project directory
where the CMakeLists.txt is located. The CMakeLists.txt file is the CMake equivalent of
the configure script for Autotools-based projects.
We can then build the project out-of-source from inside the _build directory and install the
package just as before:

$ make

$ sudo make install

CMake uses absolute paths so the _build subdirectory cannot be copied or moved once the
makefiles have been generated or any subsequent make step will likely fail. Note that
CMake defaults to installing packages into system directories such as /usr/bin even for
out-of-source builds.



To generate the makefiles so that make installs the package in the _build subdirectory,
replace the previous cmake command with the following:

$ cmake .. -D CMAKE_INSTALL_PREFIX=../_build

We no longer need to preface make install with sudo because we do not need elevated
permissions to copy the package files into the _build directory.
Similarly, we can use another CMake command-line option to generate makefiles for cross-
compilation:

$ cmake .. -D CMAKE_C_COMPILER="/usr/local/share/x-tools/arm-cortex_a8-
linux-gnueabihf-gcc"

But the best practice for cross-compiling with CMake is to create a toolchain file that sets
CMAKE_C_COMPILER and CMAKE_CXX_COMPILER in addition to other relevant variables for
targeting embedded Linux.
CMake works best when we design our software in a modular way by enforcing 
well-defined API boundaries between libraries and components.
Here are some key terms that come up time and time again in CMake:

target: A software component such as a library or executable.
properties: Include the source files, compiler options, and linked libraries needed to
build a target.
package: A CMake file that configures an external target for building just as if it was
defined within your CMakeLists.txt itself.

For example, if we had a CMake-based executable named dummy that needed to take a
dependency on SQLite, we could define the following CMakeLists.txt:

cmake_minimum_required (VERSION 3.0)

project (Dummy)

add_executable(dummy dummy.c)

find_package (SQLite3)

target_include_directories(dummy PRIVATE ${SQLITE3_INCLUDE_DIRS})

target_link_libraries (dummy PRIVATE ${SQLITE3_LIBRARIES})

The find_package command searches for a package (SQLite3 in this case) and imports it
so that the external target can be added as a dependency to the dummy executable's list of
target_link_libraries for linking.
CMake comes with numerous finders for popular C and C++ packages including OpenSSL,
Boost, and protobuf, making native development much more productive than if we were to
use just pure makefiles.
The PRIVATE qualifier prevents details such as headers and flags from leaking outside of the
dummy target. Using PRIVATE makes more sense when the target being built is a library
instead of an executable. Think of targets as modules and attempt to minimize their exposed
surface areas when using CMake to define your own targets. Only employ the PUBLIC
qualifier when absolutely necessary and utilize the INTERFACE qualifier for header-only
libraries.



Model your application as a dependency graph with edges between targets. This graph
should not only include the libraries that your application links to directly but any transitive
dependencies as well. For best results, remove any cycles or other unnecessary
independencies seen in the graph. It is often best to perform this exercise before you start
coding. A little planning can make the difference between a clean, easily maintainable
CMakeLists.txt and an inscrutable mess that nobody wants to touch.

Summary
The toolchain is always your starting point; everything that follows from that is dependent
on having a working, reliable toolchain.
You may start with nothing but a toolchain—perhaps built using crosstool-NG or
downloaded from Linaro—and use it to compile all the packages that you need on your
target. Or you may obtain the toolchain as part of a distribution generated from source code
using a build system such as Buildroot or the Yocto Project. Beware of toolchains or
distributions that are offered to you for free as part of a hardware package; they are often
poorly configured and not maintained.
Once you have a toolchain, you can use it to build the other components of your embedded
Linux system. In the next chapter, you will learn about the bootloader, which brings your
device to life and begins the boot process. We will use the toolchain we built in this chapter
to build a working bootloader for the BeagleBone Black.

Further reading
Here are a couple of videos that capture the state of the art on cross toolchains and build
systems at the time of writing:

A Fresh Look at Toolchains and Crosscompilers in 2020, by Bernhard "Bero"
Rosenkränzer: https://www.youtube.com/watch?v=BHaXqXzAs0Y
Modern CMake for modular design, by Mathieu Ropert: 
https://www.youtube.com/watch?v=eC9-iRN2b04

https://www.youtube.com/watch?v=BHaXqXzAs0Y
https://www.youtube.com/watch?v=eC9-iRN2b04


Chapter 3: All about Bootloaders
The bootloader is the second element of embedded Linux. It is the part that starts the
system and loads the operating system kernel. In this chapter, we will look at the role of the
bootloader and, in particular, how it passes control from itself to the kernel using a data
structure called a device tree, also known as a flattened device tree or FDT. I will cover
the basics of device trees, as this will help you follow the connections described in a device
tree and relate it to real hardware.
I will look at the popular open source bootloader known as U-Boot and show you how to
use it to boot a target device, as well as how to customize it so that it can run on a new
device by using the BeagleBone Black as an example.
In this chapter, we will cover the following topics:

What does a bootloader do?
The boot sequence
Moving from the bootloader to a kernel
Introducing device trees
U-Boot

Let's get started!

Technical requirements
To follow along with the examples in this chapter, make sure you have the following:

A Linux-based host system with device-tree-compiler, git, make, patch, and u-
boot-tools or their equivalents installed.
The Crosstool-NG toolchain for BeagleBone Black from Chapter 2, Learning 
About Toolchains.
A microSD card reader and card.
A USB to TTL 3.3V serial cable
BeagleBone Black
A 5V 1A DC power supply

All the code that will be used in this chapter can be found in the Chapter03 folder of this
book's GitHub repository: https://github.com/PacktPublishing/Mastering-Embedded-Linux-
Programming-Third-Edition.

https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


What does a bootloader do?
In an embedded Linux system, the bootloader has two main jobs: to initialize the system to
a basic level and to load the kernel. In fact, the first job is somewhat subsidiary to the
second, in that it is only necessary to get as much of the system working as is needed to
load the kernel.
When the first lines of the bootloader code are executed, following a power-on or a reset,
the system is in a very minimal state. The DRAM controller is not set up, so the main
memory is not accessible. Likewise, other interfaces are not configured, so storage that's
accessed via NAND flash controllers, MMC controllers, and so on is unavailable. Typically,
the only resources that are operational at the beginning are a single CPU core, some on-chip
static memory, and the boot ROM.
System bootstrap consists of several phases of code, each bringing more of the system into
operation. The final act of the bootloader is to load the kernel into RAM and create an
execution environment for it. The details of the interface between the bootloader and the
kernel are architecture-specific, but in each case, it has to do two things. First, the
bootloader has to pass a pointer to a structure containing information about the hardware
configuration. Second, it has to pass a pointer to the kernel command line.
The kernel command line is a text string that controls the behavior of Linux. Once the
kernel has begun executing, the bootloader is no longer needed and all the memory it was
using can be reclaimed.
A subsidiary job of the bootloader is to provide a maintenance mode for updating boot
configurations, loading new boot images into memory, and, maybe, running diagnostics.
This is usually controlled by a simple command-line user interface, commonly over a serial
console.

The boot sequence
In simpler times, some years ago, it was only necessary to place the bootloader in non-
volatile memory at the reset vector of the processor. NOR flash memory was common at
that time and, since it can be mapped directly into the address space, it was the ideal
method of storage. The following diagram shows such a configuration, with the Reset
vector at 0xfffffffc at the top end of an area of flash memory. The bootloader is linked so
that there is a jump instruction at that location that points to the start of the bootloader code:



Figure 3.1 – NOR flash

From that point on, the bootloader code running in NOR flash memory can initialize the
DRAM controller so that the main memory – the DRAM – becomes available and then
copies itself into the DRAM. Once fully operational, the bootloader can load the kernel
from flash memory into DRAM and transfer control to it.
However, once you move away from a simple linearly addressable storage medium such as
NOR flash, the boot sequence becomes a complex, multi-stage procedure. The details are
very specific to each SoC, but they generally follow each of the following phases.

Phase 1 – ROM code
In the absence of reliable external memory, the code that runs immediately after a 
reset or power-on has to be stored on-chip in the SoC; this is known as ROM code. It is
loaded into the chip when it is manufactured, and hence the ROM code is proprietary and
cannot be replaced by an open source equivalent. Usually, it does not include code to
initialize the memory controller, since DRAM configurations are highly device-specific,
and so it can only use Static Random Access Memory (SRAM), which does not require a
memory controller.
Most embedded SoC designs have a small amount of SRAM on-chip, varying in size from
as little as 4 KB to several hundred KB:



Figure 3.2 – Phase 1 – ROM code

The ROM code is capable of loading a small chunk of code from one of several pre-
programmed locations into the SRAM. As an example, TI OMAP and Sitara chips try to
load code from the first few pages of NAND flash memory, or from flash memory
connected through a Serial Peripheral Interface (SPI), or from the first sectors of an
MMC device (which could be an eMMC chip or an SD card), or from a file named MLO on
the first partition of an MMC device. If it's reading from all these memory devices fails,
then it tries reading a byte stream from Ethernet, USB, or UART; the latter is provided
mainly as a means of loading code into flash memory during production, rather than for use
in normal operation. Most embedded SoCs have ROM code that works in a similar way. In
SoCs, where the SRAM is not large enough to load a full bootloader such as U-Boot, there
has to be an intermediate loader called the secondary program loader (SPL).
At the end of the ROM code phase, the SPL is present in the SRAM and the ROM code
jumps to the beginning of that code.

Phase 2 – secondary program loader
The SPL must set up the memory controller and other essential parts of the system in
preparation for loading the Tertiary Program Loader (TPL) into DRAM. The
functionality of the SPL is limited by the size of the SRAM. It can read a program from a
list of storage devices, as can the ROM code, once again using pre-programmed offsets
from the start of a flash device. If the SPL has filesystem drivers built in to it, it can read
well-known filenames, such as u-boot.img, from a disk partition. The SPL usually doesn't
allow for any user interaction, but it may print version information and progress messages,
which you can see on the console. The following diagram explains the phase 2 architecture:



Figure 3.3 – Phase 2 – SPL

The preceding diagram shows the jump from ROM code to SPL. As the SPL executes
within SRAM, it loads the TPL into DRAM. At the end of the second phase, the TPL is
present in DRAM, and the SPL can make a jump to that area.
The SPL may be open source, as is the case with the TI x-loader and Atmel AT91Bootstrap,
but it is quite common for it to contain proprietary code that is supplied by the manufacturer
as a binary blob.

Phase 3 – TPL
At this point, we are running a full bootloader, such as U-Boot, which we will learn about a
bit later in this chapter. Usually, there is a simple command-line user interface that lets you
perform maintenance tasks, such as loading new boot and kernel images into flash storage,
and loading and booting a kernel, and there is a way to load the kernel automatically
without user intervention.
The following diagram explains the phase 3 architecture:



Figure 3.4 – Phase 3 – TPL

The preceding diagram shows the jump from SPL in SRAM to TPL in DRAM. As the TPL
executes, it loads the kernel into DRAM. We also have the choice of appending an FDT
and/or initial RAM disk to the image in DRAM if we want. Either way, at the end of the
third phase, there is a kernel in memory, waiting to be started.
Embedded bootloaders usually disappear from memory once the kernel is running and have
no further part in the operation of the system. Before that happens, the TPL needs to hand
off control of the boot process to the kernel.

Moving from the bootloader to a kernel
When the bootloader passes control to the kernel, it has to pass some basic information,
which includes the following:

The machine number, which is used on PowerPC and Arm platforms without support
for a device tree, to identify the type of the SoC.
Basic details of the hardware that's been detected so far, including (at the very least)
the size and location of the physical RAM and the CPU's clock speed.
The kernel command line.
Optionally, the location and size of a device tree binary.



Optionally, the location and size of an initial RAM disk, called the initial RAM file
system (initramfs).

The kernel command line is a plain ASCII string that controls the behavior of Linux by
giving, for example, the name of the device that contains the root filesystem. We will look
at the details of this in the next chapter. It is common to provide the root filesystem as a
RAM disk, in which case it is the responsibility of the bootloader to load the RAM disk
image into memory. We will cover how create initial RAM disks in Chapter 5, Building a
Root Filesystem.
The way this information is passed is dependent on the architecture and has changed in
recent years. For instance, with PowerPC, the bootloader simply used to pass a pointer to a
board information structure, whereas with Arm, it passed a pointer to a list of A tags. There
is a good description of the format of A tags in the kernel source in
Documentation/arm/Booting.
In both cases, the amount of information that was passed was very limited, leaving the bulk
of it to be discovered at runtime or hard-coded into the kernel as platform data. The
widespread use of platform data meant that each board had to have a kernel configured and
modified for that platform. A better way was needed, and that way is the device tree. In the
Arm world, the move away from A tags began in earnest in February 2013 with the release
of Linux 3.8. Today, almost all Arm systems use device tree to gather information about the
specifics of the hardware platform, allowing a single kernel binary to run on a wide range
of those platforms.
Now that we've learned what a bootloader does, what the stages of the boot sequence are,
and how it passes control to the kernel, let's learn how to configure a bootloader so that it
runs on popular embedded SoCs.

Introducing device trees
If you are working with Arm or PowerPC SoCs, you are almost certainly going to
encounter device trees at some point. This section aims to give you a quick overview of
what they are and how they work. We will revisit the topic of device trees repeatedly
throughout the course of this book.
A device tree is a flexible way of defining the hardware components of a computer system.
Bear in mind that a device tree is just static data, not executable code. Usually, the device
tree is loaded by the bootloader and passed to the kernel, although it is possible to bundle
the device tree with the kernel image itself to cater for bootloaders that are not capable of
loading them separately.
The format is derived from a Sun Microsystems bootloader known as OpenBoot, which
was formalized as the Open Firmware specification, which is IEEE standard IEEE1275-
1994. It was used in PowerPC-based Macintosh computers and so was a logical choice for
the PowerPC Linux port. Since then, it has been adopted at a large scale by the many Arm



Linux implementations and, to a lesser extent, by MIPS, MicroBlaze, ARC, and other
architectures.
I would recommend visiting https://www.devicetree.org for more information.

Device tree basics
The Linux kernel contains a large number of device tree source files in
arch/$ARCH/boot/dts, and this is a good starting point for learning about device trees.
There are also a smaller number of sources in the U-boot source code in arch/$ARCH/dts.
If you acquired your hardware from a third party, the dts file forms part of the board
support package, so you should expect to receive one along with the other source files.
The device tree represents a computer system as a collection of components joined together
in a hierarchy, such as a tree. The device tree begins with a root node, represented by a
forward slash, /, which contains subsequent nodes representing the hardware of the system.
Each node has a name and contains a number of properties in the form name = "value".
Here is a simple example:

/dts-v1/;

/{

    model = "TI AM335x BeagleBone";

    compatible = "ti,am33xx";

    #address-cells = <1>;

    #size-cells = <1>;

    cpus {

        #address-cells = <1>;

        #size-cells = <0>;

        cpu@0 {

            compatible = "arm,cortex-a8";

            device_type = "cpu";

            reg = <0>;

        };

    };

    memory@0x80000000 {

        device_type = "memory";

        reg = <0x80000000 0x20000000>; /* 512 MB */

    };

};

Here, we have a root node that contains a cpus node and a memory node. The cpus node
contains a single CPU node named cpu@0. The names of these nodes often include an @,
followed by an address that distinguishes the node from other nodes of the same type. @ is
required if the node has a reg property.
Both the root and CPU nodes have a compatible property. The Linux kernel uses this
property to find a matching device driver by comparing it with the strings that are exported

https://www.devicetree.org/


by each device driver in a of_device_id structure (more on this in Chapter 11, Interfacing
with Device Drivers).

IMPORTANT NOTE
It is a convention that the value of the compatible property is composed of a manufacturer
name and a component name, to reduce confusion between similar devices made by
different manufacturers; hence, ti,am33xx and arm,cortex-a8. It is also quite common to
have more than one value for the compatible property where there is more than one driver
that can handle this device. They are listed with the most suitable mentioned first.
The CPU node and the memory node have a device_type property, which describes the
class of device. The node name is often derived from device_type.

The reg property
The memory and cpu nodes shown earlier have a reg property, which refers to a range of
units in a register space. A reg property consists of two values representing the real
physical address and the size (length) of the range. Both are written as zero or more 32-bit
integers, called cells. Hence, the previous memory node refers to a single bank of memory
that begins at 0x80000000 and is 0x20000000 bytes long.
Understanding reg properties becomes more complex when the address or size values
cannot be represented in 32 bits. For example, on a device with 64-bit addressing, you need
two cells for each:

/{

    #address-cells = <2>;

    #size-cells = <2>;

    memory@80000000 {

        device_type = "memory";

        reg = <0x00000000 0x80000000 0 0x80000000>;

    };

};

The information about the number of cells required is held in the #address-cells and
#size_cells properties in an ancestor node. In other words, to understand a reg property,
you have to look backward down the node hierarchy until you find #address-cells and
#size_cells. If there are none, the default values are 1 for each – but it is bad practice for
device tree writers to depend on defaults.
Now, let's return to the cpu and cpus nodes. CPUs have addresses as well; in a quad core
device, they might be addressed as 0, 1, 2, and 3. That can be thought of as a one-
dimensional array without any depth, so the size is zero. Therefore, you can see that we
have #address-cells = <1> and #size-cells = <0> in the cpus node, and in the child
node, cpu@0, we assign a single value to the reg property, reg = <0>.



Labels and interrupts
The structure of the device tree we've described so far assumes that there is a single
hierarchy of components, whereas there are, in fact, several. As well as the obvious data
connection between a component and other parts of the system, it might also be connected
to an interrupt controller, to a clock source, and to a voltage regulator. To express these
connections, we can add a label to a node and reference the label from other nodes. These
labels are sometimes referred to as phandles, because when the device tree is compiled,
nodes with a reference from another node are assigned a unique numerical value in a
property called phandle. You can see them if you decompile the device tree binary.
Take, as an example, a system containing an LCD controller that can generate interrupts
and an interrupt-controller:

/dts-v1/;

{

    intc: interrupt-controller@48200000 {

        compatible = "ti,am33xx-intc";

        interrupt-controller;

        #interrupt-cells = <1>;

        reg = <0x48200000 0x1000>;

    };

    lcdc: lcdc@4830e000 {

        compatible = "ti,am33xx-tilcdc";

        reg = <0x4830e000 0x1000>;

        interrupt-parent = <&intc>;

        interrupts = <36>;

        ti,hwmods = "lcdc";

        status = "disabled";

    };

};

Here, we have the interrupt-controller@48200000 node with a label of intc. The
interrupt-controller property identifies it as an interrupt controller. Like all interrupt
controllers, it has an #interrupt-cells property, which tells us how many cells are needed
to represent an interrupt source. In this case, there is only one that represents the interrupt
request (IRQ) number. Other interrupt controllers may use additional cells to characterize
the interrupt; for example, to indicate whether it is edge or level triggered. The number of
interrupt cells and their meanings is described in the bindings for each interrupt controller.
The device tree bindings can be found in the Linux kernel source, in the
Documentation/devicetree/bindings/ directory.
Looking at the lcdc@4830e000 node, it has an interrupt-parent property, which
references the interrupt controller it is connected to, using the label. It also has an
interrupts property, which is 36 in this case. Note that this node has its own label, lcdc,
which is used elsewhere: any node can have a label.



Device tree include files
A lot of hardware is common between SoCs of the same family and between boards using
the same SoC. This is reflected in the device tree by splitting out common sections into
include files, usually with the .dtsi extension. The Open Firmware standard defines
/include/ as the mechanism to be used, as in this snippet from vexpress-v2p-ca9.dts:

/include/ "vexpress-v2m.dtsi"

Look through the .dts files in the kernel, though, and you will find an alternative include
statement that is borrowed from C; for example, in am335x-boneblack.dts:

#include "am33xx.dtsi"

#include "am335x-bone-common.dtsi"

Here is another example from am33xx.dtsi:
#include <dt-bindings/gpio/gpio.h>

#include <dt-bindings/pinctrl/am33xx.h>

#include <dt-bindings/clock/am3.h>

Lastly, include/dt-bindings/pinctrl/am33xx.h contains normal C macros:
#define PULL_DISABLE       (1 << 3)

#define INPUT_EN           (1 << 5)

#define SLEWCTRL_SLOW      (1 << 6)

#define SLEWCTRL_FAST       0

All of this is resolved if the device tree sources are built using the Kbuild system, which
runs them through the C preprocessor, CPP, where the #include and #define statements
are processed into text that is suitable for the device tree compiler. This motivation is
illustrated in the previous example; it means that the device tree sources can use the same
definitions of constants as the kernel code.
When we include files, using either syntax, the nodes are overlaid on top of one another to
create a composite tree in which the outer layers extend or modify the inner ones. For
example, am33xx.dtsi, which is general to all am33xx SoCs, defines the first MMC
controller interface, like this:

mmc1: mmc@48060000 {

    compatible = "ti,omap4-hsmmc";

    ti,hwmods = "mmc1";

    ti,dual-volt;

    ti,needs-special-reset;

    ti,needs-special-hs-handling;

    dmas = <&edma_xbar 24 0 0

        &edma_xbar 25 0 0>;

    dma-names = "tx", "rx";

    interrupts = <64>;

    reg = <0x48060000 0x1000>;

    status = "disabled";

};



Note that status is disabled, meaning that no device driver should be bound to it, and also
that it has a label of mmc1.
Both the BeagleBone and the BeagleBone Black have a microSD card interface attached to
mmc1. This is why, in am335x-bone-common.dtsi, the same node is referenced by its label;
that is, &mmc1:

&mmc1 {

    status = "okay";

    bus-width = <0x4>;

    pinctrl-names = "default";

    pinctrl-0 = <&mmc1_pins>;

    cd-gpios = <&gpio0 6 GPIO_ACTIVE_LOW>;

};

The status property is set to okay, which causes the MMC device driver to bind with this
interface at runtime on both variants of the BeagleBone. Also, a reference to a label is
added to the pin control configuration, mmc1_pins. Alas, there is not sufficient space here to
describe pin control and pin multiplexing. You will find some information in the Linux
kernel source in the Documentation/devicetree/bindings/pinctrl directory.
However, the mmc1 interface is connected to a different voltage regulator on the BeagleBone
Black. This is expressed in am335x-boneblack.dts, where you will see another reference to
mmc1, which associates it with the voltage regulator via the vmmcsd_fixed label:

&mmc1 {

    vmmc-supply = <&vmmcsd_fixed>;

};

So, layering the device tree source files like this gives us flexibility and reduces the need
for duplicated code.

Compiling a device tree
The bootloader and kernel require a binary representation of the device tree, so it has to be
compiled using the device tree compiler; that is, dtc. The result is a file ending with .dtb,
which is referred to as a device tree binary or a device tree blob.
There is a copy of dtc in the Linux source, in scripts/dtc/dtc, and it is also available as a
package on many Linux distributions. You can use it to compile a simple device tree (one
that does not use #include) like this:

$ dtc simpledts-1.dts -o simpledts-1.dtb

DTC: dts->dts on file "simpledts-1.dts"

Be wary of the fact that dtc does not give helpful error messages and makes no checks
other than on the basic syntax of the language, which means that debugging a typing error
in a source file can be a lengthy process.
To build more complex examples, you will have to use the Kbuild kernel, as shown in
Chapter 4, Configuring and Building the Kernel.



Like the kernel, the bootloader can use a device tree to initialize an embedded SoC and its
peripherals. This device tree is critical when you're loading the kernel from a mass storage
device such as a QSPI flash. While embedded Linux offers a choice of bootloaders, we will
only cover one. We'll dig deep into that bootloader next.

U-Boot
We are going to focus on U-Boot exclusively because it supports a good number of
processor architectures and a large number of individual boards and devices. It has been
around for a long time and has a good community for support.
U-Boot, or to give its full name, Das U-Boot, began life as an open source bootloader for
embedded PowerPC boards. Then, it was ported to Arm-based boards and later to other
architectures, including MIPS and SH. It is hosted and maintained by Denx Software
Engineering. There is plenty of information available on it, and a good place to start is
https://www.denx.de/wiki/U-Boot. There is also a mailing list at u-boot@lists.denx.de that
you can subscribe to by filling out and submitting the form provided at
https://lists.denx.de/listinfo/u-boot.

Building U-Boot
Begin by getting the source code. As with most projects, the recommended way is to clone
the .git archive and check out the tag you intend to use – which, in this case, is the version
that was current at the time of writing:

$ git clone git://git.denx.de/u-boot.git

$ cd u-boot

$ git checkout v2021.01

Alternatively, you can get a tarball from ftp://ftp.denx.de/pub/u-boot.
There are more than 1,000 configuration files for common development boards and devices
in the configs/ directory. In most cases, you can take a good guess regarding which to use,
based on the filename, but you can get more detailed information by looking through the
per-board README files in the board/ directory, or you can find information in an
appropriate web tutorial or forum.
Taking the BeagleBone Black as an example, we will find that there is a likely
configuration file named configs/am335x_evm_defconfig and the text The binary
produced by this board supports ... Beaglebone Black in the board's README file for the
am335x chip, board/ti/am335x/README. With this knowledge, building U-Boot for a
BeagleBone Black is simple. You need to inform U-Boot of the prefix for your cross
compiler by setting the CROSS_COMPILE make variable, and then selecting the configuration
file using a command of the make [board]_defconfig type. Therefore, to build U-Boot
using the Crosstool-NG compiler we created in Chapter 2, Learning About Toolchains, you
would type in the following:

https://www.denx.de/wiki/U-Boot
mailto:u-boot@lists.denx.de
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ftp://ftp.denx.de/pub/u-boot


$ source ../MELP/Chapter02/set-path-arm-cortex_a8-linux-gnueabihf

$ make am335x_evm_defconfig

$ make

The results of the compilation are as follows:
u-boot: U-Boot in ELF object format, suitable for use with a debugger
u-boot.map: The symbol table
u-boot.bin: U-Boot in raw binary format, suitable for running on your device
u-boot.img: This is u-boot.bin with a U-Boot header added, suitable for uploading
to a running copy of U-Boot
u-boot.srec: U-Boot in Motorola S-record (SRECORD or SRE) format, suitable for
transferring over a serial connection

The BeagleBone Black also requires a secondary program loader (SPL), as described
earlier. This is built at the same time and is named MLO:

$ ls -l MLO u-boot*

-rw-rw-r-- 1 frank frank  108260 Feb  8 15:24 MLO

-rwxrwxr-x 1 frank frank 6028304 Feb  8 15:24 u-boot

-rw-rw-r-- 1 frank frank  594076 Feb  8 15:24 u-boot.bin

-rw-rw-r-- 1 frank frank   20189 Feb  8 15:23 u-boot.cfg

-rw-rw-r-- 1 frank frank   10949 Feb  8 15:24 u-boot.cfg.configs

-rw-rw-r-- 1 frank frank   54860 Feb  8 15:24 u-boot.dtb

-rw-rw-r-- 1 frank frank  594076 Feb  8 15:24 u-boot-dtb.bin

-rw-rw-r-- 1 frank frank  892064 Feb  8 15:24 u-boot-dtb.img

-rw-rw-r-- 1 frank frank  892064 Feb  8 15:24 u-boot.img

-rw-rw-r-- 1 frank frank    1722 Feb  8 15:24 u-boot.lds

-rw-rw-r-- 1 frank frank  802250 Feb  8 15:24 u-boot.map

-rwxrwxr-x 1 frank frank  539216 Feb  8 15:24 u-boot-nodtb.bin

-rwxrwxr-x 1 frank frank 1617810 Feb  8 15:24 u-boot.srec

-rw-rw-r-- 1 frank frank  211574 Feb  8 15:24 u-boot.sym

The procedure is similar for other targets.

Installing U-Boot
Installing a bootloader on a board for the first time requires some outside assistance. If the
board has a hardware debug interface, such as JTAG (Joint Test Action Group), it is
usually possible to load a copy of U-Boot directly into RAM and get it running. From that
point, you can use U-Boot commands so that it copies itself into flash memory. The details
of this are very board-specific and outside the scope of this book.
Many SoC designs have a boot ROM built in that can be used to read boot code from
various external sources, such as SD cards, serial interfaces, or USB mass storage. This is



the case with the am335x chip in the BeagleBone Black, which makes it easy to try out new
software.
You will need an SD card reader to write the images to a card. There are two types: external
readers that plug into a USB port, and the internal SD readers that are present on many
laptops. A device name is assigned by Linux when a card is plugged into the reader. The
lsblk command is a useful tool for finding out which device has been allocated. For
example, this is what I see when I plug a nominal 8 GB microSD card into my card reader:

$ lsblk

NAME        MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT

sda           8:0    1   7.4G  0 disk

└─sda1        8:1    1   7.4G  0 part /media/frank/6662-6262

nvme0n1     259:0    0 465.8G  0 disk

├─nvme0n1p1 259:1    0   512M  0 part /boot/efi

├─nvme0n1p2 259:2    0    16M  0 part

├─nvme0n1p3 259:3    0 232.9G  0 part

└─nvme0n1p4 259:4    0 232.4G  0 part /

In this case, nvme0n1 is my 512 GB hard drive and sda is the microSD card. It has a single
partition, sda1, which is mounted as the /media/frank/6662-6262 directory.

IMPORTANT NOTE
Although the microSD card had 8 GB printed on the outside, it was only 7.4 GB on the
inside. In part, this is because of the different units being used. The advertised capacity is
measured in gigabytes, 109, but the sizes reported by software are in gibibytes, 230.
Gigabytes is abbreviated to GB, while gibibytes is abbreviated to GiB. The same applies for
KB and KiB and MB and MiB. In this book, I have tried to use the right units. In the case of
the SD card, it so happens that 8 GB is approximately 7.4 GiB.
If I use the built-in SD card slot, I see this:

$ lsblk

NAME        MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT

mmcblk0     179:0    1   7.4G  0 disk

└─mmcblk0p1 179:1    1   7.4G  0 part /media/frank/6662-6262

nvme0n1     259:0    0 465.8G  0 disk

├─nvme0n1p1 259:1    0   512M  0 part /boot/efi

├─nvme0n1p2 259:2    0    16M  0 part

├─nvme0n1p3 259:3    0 232.9G  0 part

└─nvme0n1p4 259:4    0 232.4G  0 part /

In this case, the microSD card appears as mmcblk0 and the partition is mmcblk0p1. Note that
the microSD card you use may have been formatted differently to this one, so you may see
a different number of partitions with different mount points. When formatting an SD card, it
is very important to be sure of its device name. You really don't want to mistake your hard
drive for an SD card and format that instead. This has happened to me more than once. So, I
have provided a shell script in this book's code archive named MELP/format-sdcard.sh,
which has a reasonable number of checks to prevent you (and me) from using the wrong



device name. The parameter is the device name of the microSD card, which would be sdb
in the first example and mmcblk0 in the second. Here is an example of its use:

$ MELP/format-sdcard.sh mmcblk0

The script creates two partitions: the first is 64 MiB, formatted as FAT32, and will contain
the bootloader, while the second is 1 GiB, formatted as ext4, which you will use in Chapter
5, Building a Root Filesystem. The script aborts when it's applied to any drive greater than
32 GiB, so be prepared to modify it if you are using larger microSD cards.
Once you have formatted the microSD card, remove it from the card reader and then re-
insert it so that the partitions are auto mounted. On current versions of Ubuntu, the two
partitions should be mounted as /media/[user]/boot and /media/[user]/rootfs. Now,
you can copy the SPL and U-Boot to it, like this:

$ cp MLO u-boot.img /media/frank/boot

Finally, unmount it:
$ sudo umount /media/frank/boot

Now, with no power on the BeagleBone board, insert the microSD card into the reader. Plug
in the serial cable. A serial port should appear on your PC as /dev/ttyUSB0. Start a suitable
terminal program, such as gtkterm, minicom, or picocom, and attach to the port at 115200
bits per second (bps) with no flow control. gtkterm is probably the easiest to set up and
use:

$ gtkterm -p /dev/ttyUSB0 -s 115200

If you get a permissions error, then you may need to add yourself to the dialout group and
reboot to use this port.
Press and hold the Boot Switch button (nearest to the microSD slot) on the BeagleBone
Black, power up the board using the external 5V power connector, and release the button
after about 5 seconds. You should see some output, followed by a U-Boot prompt, on the
serial console:

U-Boot SPL 2021.01 (Feb 08 2021 - 15:23:22 -0800)

Trying to boot from MMC1

U-Boot 2021.01 (Feb 08 2021 - 15:23:22 -0800)

CPU  : AM335X-GP rev 2.1

Model: TI AM335x BeagleBone Black

DRAM:  512 MiB

WDT:   Started with servicing (60s timeout)

NAND:  0 MiB

MMC:   OMAP SD/MMC: 0, OMAP SD/MMC: 1

Loading Environment from FAT... *** Warning - bad CRC, using default
environment

<ethaddr> not set. Validating first E-fuse MAC

Net:   eth2: ethernet@4a100000, eth3: usb_ether

Hit any key to stop autoboot:  0

=>



Hit any key on your keyboard to stop U-Boot from autobooting with the default
environment. Now that we have a U-Boot prompt in front of us, let's put U-Boot through its
paces.

Using U-Boot
In this section, I will describe some of the common tasks that you can use U-Boot 
to perform.
Usually, U-Boot offers a command-line interface over a serial port. It provides a command
prompt that is customized for each board. In these examples, I will use =>. Typing help
prints out all the commands that have been configured in this version of U-Boot; typing
help <command> prints out more information about a particular command.
The default command interpreter for the BeagleBone Black is quite simple. You cannot do
command-line editing by pressing the left or right keys; there is no command completion by
pressing the Tab key; and there is no command history by pressing the up key. Pressing any
of these keys will disrupt the command you are currently trying to type, and you will have
to type Ctrl + C and start all over again. The only line editing key you can safely use is the
backspace. As an option, you can configure a different command shell called Hush, which
has more sophisticated interactive support, including command-line editing.
The default number format is hexadecimal. Consider the following command as 
an example:

=> nand read 82000000 400000 200000

This will read 0x200000 bytes from offset 0x400000 from the start of the NAND flash
memory into RAM address 0x82000000.
Environment variables
U-Boot uses environment variables extensively to store and pass information between
functions and even to create scripts. Environment variables are simple name=value pairs
that are stored in an area of memory. The initial population of variables may be coded in the
board configuration header file, like this:

#define CONFIG_EXTRA_ENV_SETTINGS

"myvar1=value1"

"myvar2=value2"

[…]

You can create and modify variables from the U-Boot command line using setenv. For
example, setenv foo bar creates the foo variable with the bar value. Note that there is no
= sign between the variable name and the value. You can delete a variable by setting it to a
null string, setenv foo. You can print all the variables to the console using printenv, or a
single variable using printenv foo.
If U-Boot has been configured with space to store the environment, you can use the
saveenv command to save it. If there is raw NAND or NOR flash, then an erase block can
be reserved for this purpose, often with another being used as a redundant copy to guard



against corruption. If there is eMMC or SD card storage, it can be stored in a reserved array
of sectors, or in a file named uboot.env in a partition of the disk. Other options include
storing it in a serial EEPROM connected via an I2C or SPI interface or non-volatile RAM.
Boot image format
U-Boot doesn't have a filesystem. Instead, it tags blocks of information with a 64-byte
header so that it can track the contents. We prepare files for U-Boot using the mkimage
command-line tool, which comes bundled with the u-boot-tools package on Ubuntu. You
can also get mkimage by running make tools from within the U-Boot source tree, and then
invoke it as tools/mkimage.
Here is a brief summary of the command's usage:

$ mkimage

Error: Missing output filename

Usage: mkimage -l image

          -l ==> list image header information

       mkimage [-x] -A arch -O os -T type -C comp -a addr -e ep -n name
-d data_file[:data_file...] image

          -A ==> set architecture to 'arch'

          -O ==> set operating system to 'os'

          -T ==> set image type to 'type'

          -C ==> set compression type 'comp'

          -a ==> set load address to 'addr' (hex)

          -e ==> set entry point to 'ep' (hex)

          -n ==> set image name to 'name'

          -d ==> use image data from 'datafile'

          -x ==> set XIP (execute in place)

       mkimage [-D dtc_options] [-f fit-image.its|-f auto|-F] [-b <dtb>
[-b <dtb>]] [-i <ramdisk.cpio.gz>] fit-image

           <dtb> file is used with -f auto, it may occur multiple times.

          -D => set all options for device tree compiler

          -f => input filename for FIT source

          -i => input filename for ramdisk file

Signing / verified boot options: [-E] [-B size] [-k keydir] [-K dtb] [ -
c <comment>] [-p addr] [-r] [-N engine]

          -E => place data outside of the FIT structure

          -B => align size in hex for FIT structure and header

          -k => set directory containing private keys

          -K => write public keys to this .dtb file

          -c => add comment in signature node

          -F => re-sign existing FIT image

          -p => place external data at a static position

          -r => mark keys used as 'required' in dtb

          -N => openssl engine to use for signing

       mkimage -V ==> print version information and exit

Use '-T list' to see a list of available image types



For example, to prepare a kernel image for an Arm processor, you can use the 
following command:

$ mkimage -A arm -O linux -T kernel -C gzip -a 0x80008000 \ 
-e 0x80008000

-n 'Linux' -d zImage uImage

In this instance, the architecture is arm, the operating system is linux, and the image type is
kernel. Additionally, the compression scheme is gzip, the load address is 0x80008000, and
the entry point is the same as the load address. Lastly, the image 
name is Linux, the image datafile is named zImage, and the image being generated is
named uImage.
Loading images
Usually, you will load images from removable storage, such as an SD card or a network.
SD cards are handled in U-Boot by the MMC driver. A typical sequence that's used to load
an image into memory is as follows:

=> mmc rescan

=> fatload mmc 0:1 82000000 uimage

reading uimage

4605000 bytes read in 254 ms (17.3 MiB/s)

=> iminfo 82000000

## Checking Image at 82000000 ...

Legacy image found

Image Name: Linux-3.18.0

Created: 2014-12-23 21:08:07 UTC

Image Type: ARM Linux Kernel Image (uncompressed)

Data Size: 4604936 Bytes = 4.4 MiB

Load Address: 80008000

Entry Point: 80008000

Verifying Checksum ... OK

The mmc rescan command re-initializes the MMC driver, perhaps to detect that an SD card
has recently been inserted. Next, fatload is used to read a file from a FAT-formatted
partition on the SD card. The format is as follows:

fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

If <interface> is mmc, as in our case, <dev:part> is the device number of the MMC
interface counting from zero, and the partition number counting from one. Hence, <0:1> is
the first partition on the first device, which is mmc 0 for the microSD card (the onboard
eMMC is mmc 1). The memory location, 0x82000000, is chosen to be in an area of RAM
that is not being used at this moment. If we intend to boot this kernel, we must make sure
that this area of RAM will not be overwritten when the kernel image is decompressed and
located at the runtime location, 0x80008000.
To load image files over a network, you must use the Trivial File Transfer Protocol
(TFTP). This requires you to install a TFTP daemon, tftpd, on your development system
and start running it. You must also configure any firewalls between your PC and the target
board to allow the TFTP protocol on UDP port 69 to pass through. The default



configuration of TFTP only allows access to the /var/lib/tftpboot directory. The next
step is to copy the files you want to transfer to the target into that directory. Then, assuming
that you are using a pair of static IP addresses, which removes the need for further network
administration, the sequence of commands to load a set of kernel image files should look
like this:

=> setenv ipaddr 192.168.159.42

=> setenv serverip 192.168.159.99

=> tftp 82000000 uImage

link up on port 0, speed 100, full duplex

Using cpsw device

TFTP from server 192.168.159.99; our IP address is 192.168.159.42

Filename 'uImage'.

Load address: 0x82000000

Loading:

########################################################################
########################################################################
########################################################################
########################################################################
########################

3 MiB/s

done

Bytes transferred = 4605000 (464448 hex)

Finally, let's look at how to program images into NAND flash memory and read them back,
which is handled by the nand command. This example loads a kernel image via TFTP and
programs it into flash:

=> tftpboot 82000000 uimage

=> nandecc hw

=> nand erase 280000 400000

NAND erase: device 0 offset 0x280000, size 0x400000

Erasing at 0x660000 -- 100% complete.

OK

=> nand write 82000000 280000 400000

NAND write: device 0 offset 0x280000, size 0x400000

4194304 bytes written: OK

Now, you can load the kernel from flash memory using the nand read command:
=> nand read 82000000 280000 400000

Once the kernel has been loaded into RAM, we can boot it.

Booting Linux
The bootm command starts a kernel image running. The syntax is as follows:

bootm [address of kernel] [address of ramdisk] [address of dtb].



The address of the kernel image is necessary, but the addresses of ramdisk and dtb can be
omitted if the kernel configuration does not need them. If there is dtb but no initramfs, the
second address can be replaced with a dash (-). This would look like this:

=> bootm 82000000 – 83000000

Plainly, typing a long series of commands to boot your board each time it is powered up is
not acceptable. Let's look at how to automate the boot process.
Automating the boot with U-Boot scripts
U-Boot stores a sequence of commands in environment variables. If the special variable
named bootcmd contains a script, it is run at power-up after a delay of bootdelay seconds.
If you watch this on the serial console, you will see the delay counting down to zero. You
can press any key during this period to terminate the countdown and enter an interactive
session with U-Boot.
The way that you create scripts is simple, though not easy to read. You simply append
commands separated by semicolons, which must be preceded by a \ escape character. So,
for example, to load a kernel image from an offset in flash memory and boot it, you might
use the following command:

setenv bootcmd nand read 82000000 400000 200000\;bootm 82000000

We now know how to boot a kernel on a BeagleBone Black using U-Boot. But how do we
port U-Boot to a new board that has no BSP? We'll cover that in the remainder of this
chapter.

Porting U-Boot to a new board
Let's assume that your hardware department has created a new board called Nova that is
based on the BeagleBone Black and that you need to port U-Boot to it. You will need to
understand the layout of the U-Boot code and how the board configuration mechanism
works. In this section, I will show you how to create a variant of an existing board – the
BeagleBone Black – which you could go on to use as the basis for further customizations.
There are quite a few files that need to be changed. I have put them together into a patch
file in the code archive in MELP/Chapter03/0001-BSP-for-Nova.patch. You can simply
apply that patch to a clean copy of U-Boot version 2021.01 like this:

$ cd u-boot

$ patch -p1 < MELP/Chapter03/0001-BSP-for-Nova.patch

If you want to use a different version of U-Boot, you will have to make some changes to the
patch for it to apply cleanly.
The remainder of this section will describe how the patch was created. If you want to
follow along step by step, you will need a clean copy of U-Boot 2021.01 without the Nova
BSP patch. The main directories we will be dealing with are as follows:

arch: Contains code that's specific to each supported architecture in the arm, mips, and
powerpc directories. Within each architecture, there is a subdirectory for each member



of the family; for example, in arch/arm/cpu/, there are directories for the architecture
variants, including amt926ejs, armv7, and armv8.
board: Contains code that's specific to a board. Where there are several boards from
the same vendor, they can be collected together into a subdirectory. Hence, the support
for the am335x EVM board, which the BeagleBone is based on, is in
board/ti/am335x.
common: Contains core functions, including the command shells and the commands that
can be called from them, each in a file named cmd_[command name].c.
doc: Contains several README files describing various aspects of U-Boot. If you are
wondering how to proceed with your U-Boot port, this is a good place to start.
include: In addition to many shared header files, this contains the very important
include/configs/ subdirectory, where you will find the majority of the board
configuration settings.

The way that Kconfig extracts configuration information from Kconfig files and stores the
total system configuration in a file named .config will be described in some detail in
Chapter 4, Configuring and Building the Kernel. Each board has a default configuration
stored in configs/[board name]_defconfig. For the Nova board, we can begin by making
a copy of the configuration for the EVM:

$ cp configs/am335x_evm_defconfig configs/nova_defconfig

Now, edit configs/nova_defconfig and insert CONFIG_TARGET_NOVA=y after
CONFIG_AM33XX=y, as shown here:

CONFIG_ARM=y

CONFIG_ARCH_CPU_INIT=y

CONFIG_ARCH_OMAP2PLUS=y

CONFIG_TI_COMMON_CMD_OPTIONS=y

CONFIG_AM33XX=y

CONFIG_TARGET_NOVA=y

CONFIG_SPL=y

[…]

Note that CONFIG_ARM=y causes the contents of arch/arm/Kconfig to be included, and that
CONFIG_AM33XX=y causes arch/arm/mach-omap2/am33xx/Kconfig to be included.
Next, insert CONFIG_SYS_CUSTOM_LDSCRIPT=y and
CONFIG_SYS_LDSCRIPT=="board/ti/nova/u-boot.lds" into the same file after
CONFIG_DISTRO_DEFAULTS=y, as shown here:

[…]

CONFIG_SPL=y

CONFIG_DEFAULT_DEVICE_TREE="am335x-evm"

CONFIG_DISTRO_DEFAULTS=y

CONFIG_SYS_CUSTOM_LDSCRIPT=y

CONFIG_SYS_LDSCRIPT="board/ti/nova/u-boot.lds"

CONFIG_SPL_LOAD_FIT=y



[…]

We are now done modifying configs/nova_defconfig.
Board-specific files
Each board has a subdirectory named board/[board name] or board/[vendor]/[board
name], which should contain the following:

Kconfig: Contains the configuration options for the board.
MAINTAINERS: Contains a record of whether the board is currently maintained and, if
so, by whom.
Makefile: Used to build the board-specific code.
README: Contains any useful information about this port of U-Boot; for example,
which hardware variants are covered.

In addition, there may be source files for board-specific functions.
Our Nova board is based on a BeagleBone, which, in turn, is based on a TI am335x EVM.
So, we should make copies of the am335x board files:

$ mkdir board/ti/nova

$ cp -a board/ti/am335x/* board/ti/nova

Next, edit board/ti/nova/Kconfig and set SYS_BOARD to "nova" so that it will build the
files in board/ti/nova. Then, set SYS_CONFIG_NAME to "nova" as well so that it will use
include/configs/nova.h as the configuration file:

if TARGET_NOVA

config SYS_BOARD

        default "nova"

config SYS_VENDOR

        default "ti"

config SYS_SOC

        default "am33xx"

config SYS_CONFIG_NAME

        default "nova"

[…]

There is one other file here that we need to change. The linker script, which has been placed
at board/ti/nova/u-boot.lds, contains a hard-coded reference to 
board/ti/am335x/built-in.o. Change it, as shown here:

{

    *(.__image_copy_start)

    *(.vectors)

    CPUDIR/start.o (.text*)

    board/ti/nova/built-in.o (.text*)

}

Now, we need to link the Kconfig file for Nova into the chain of Kconfig files. First, edit
arch/arm/Kconfig and insert source "board/ti/nova/Kconfig" after source



"board/tcl/sl50/Kconfig", as shown here:
[…]

source "board/st/stv0991/Kconfig"

source "board/tcl/sl50/Kconfig"

source "board/ti/nova/Kconfig"

source "board/toradex/colibri_pxa270/Kconfig"

source "board/variscite/dart_6ul/Kconfig"

[…]

Then, edit arch/arm/mach-omap2/am33xx/Kconfig and add a configuration option for
TARGET_NOVA immediately after TARGET_AM335X_EVM, as shown here:

[…]

config TARGET_NOVA

        bool "Support the Nova! board"

        select DM

        select DM_GPIO

        select DM_SERIAL

        select TI_I2C_BOARD_DETECT

        imply CMD_DM

        imply SPL_DM

        imply SPL_DM_SEQ_ALIAS

        imply SPL_ENV_SUPPORT

        imply SPL_FS_EXT4

        imply SPL_FS_FAT

        imply SPL_GPIO_SUPPORT

        imply SPL_I2C_SUPPORT

        imply SPL_LIBCOMMON_SUPPORT

        imply SPL_LIBDISK_SUPPORT

        imply SPL_LIBGENERIC_SUPPORT

        imply SPL_MMC_SUPPORT

        imply SPL_NAND_SUPPORT

        imply SPL_OF_LIBFDT

        imply SPL_POWER_SUPPORT

        imply SPL_SEPARATE_BSS

        imply SPL_SERIAL_SUPPORT

        imply SPL_SYS_MALLOC_SIMPLE

        imply SPL_WATCHDOG_SUPPORT

        imply SPL_YMODEM_SUPPORT

        help

          The Nova target board

[…]

All the imply SPL_ lines are necessary so that U-Boot builds cleanly without errors.
Now that we have copied and modified the board-specific files for our Nova board, let's
move on to the header files.



Configuring header files
Each board has a header file in include/configs/ that contains most of the configuration
information. The file is named by the SYS_CONFIG_NAME identifier in the board's Kconfig
file. The format of this file is described in detail in the README file, at the top level of the U-
Boot source tree. For the purposes of our Nova board, simply copy
include/configs/am335x_evm.h into include/configs/nova.h and make a few changes,
as shown here:

[…]

#ifndef __CONFIG_NOVA_H

#define __CONFIG_NOVA_H

include <configs/ti_am335x_common.h>

#include <linux/sizes.h>

#undef CONFIG_SYS_PROMPT

#define CONFIG_SYS_PROMPT "nova!> "

#ifndef CONFIG_SPL_BUILD

# define CONFIG_TIMESTAMP

#endif

[…]

#endif  /* ! __CONFIG_NOVA_H */

Besides replacing __CONFIG_AM335X_EVM_H with __CONFIG_NOVA_H, the only change that
needs to be made is to set a new command prompt so that we can identify 
this bootloader at runtime.
With the source tree fully modified, we are now ready to build U-Boot for our 
custom board.

Building and testing
To build U-Boot for the Nova board, select the configuration you have just created:

$ source ../MELP/Chapter02/set-path-arm-cortex_a8-linux-gnueabihf

$ make distclean

$ make nova_defconfig

$ make

Copy MLO and u-boot.img to the boot partition of the microSD card you created earlier and
boot the board. You should see an output like this (note the command prompt):

U-Boot SPL 2021.01-dirty (Feb 08 2021 - 21:30:41 -0800)

Trying to boot from MMC1

U-Boot 2021.01-dirty (Feb 08 2021 - 21:30:41 -0800)

CPU  : AM335X-GP rev 2.1

Model: TI AM335x BeagleBone Black

DRAM:  512 MiB

WDT:   Started with servicing (60s timeout)



NAND:  0 MiB

MMC:   OMAP SD/MMC: 0, OMAP SD/MMC: 1

Loading Environment from FAT... *** Warning - bad CRC, using default
environment

<ethaddr> not set. Validating first E-fuse MAC

Net:   eth2: ethernet@4a100000, eth3: usb_ether

Hit any key to stop autoboot:  0

nova!>

You can create a patch for all these changes by checking them into Git and using the git
format-patch command:

$ git add .

$ git commit -m "BSP for Nova"

[detached HEAD 093ec472f6] BSP for Nova

12 files changed, 2379 insertions(+)

create mode 100644 board/ti/nova/Kconfig

create mode 100644 board/ti/nova/MAINTAINERS

create mode 100644 board/ti/nova/Makefile

create mode 100644 board/ti/nova/README

create mode 100644 board/ti/nova/board.c

create mode 100644 board/ti/nova/board.h

create mode 100644 board/ti/nova/mux.c

create mode 100644 board/ti/nova/u-boot.lds

create mode 100644 configs/nova_defconfig

create mode 100644 include/configs/nova.h

$ git format-patch -1

0001-BSP-for-Nova.patch

Generating this patch concludes our coverage of U-Boot as a TPL. U-Boot can also be
configured to bypass the TPL stage of the boot process altogether. Next, let's examine this
alternate approach to booting Linux.

Falcon mode
We are used to the idea that booting a modern embedded processor involves the CPU boot
ROM loading an SPL, which loads u-boot.bin, which then loads a Linux kernel. You may
be wondering if there is a way to reduce the number of steps, thereby simplifying and
speeding up the boot process. The answer is U-Boot Falcon mode. The idea is simple: have
the SPL load a kernel image directly, missing out u-boot.bin. There is no user interaction
and there are no scripts. It just loads a kernel from a known location in flash or eMMC into
memory, passes it a pre-prepared parameter block, and starts it running. The details of
configuring Falcon mode are beyond the scope of this book. If you would like to find out
more information, take a look at doc/README.falcon.

IMPORTANT NOTE



Falcon mode is named after the peregrine falcon, which is the fastest bird of all, capable of
reaching speeds of more than 200 miles per hour in a dive.

Summary
Every system needs a bootloader to bring the hardware to life and to load a kernel. U-Boot
has found favor with many developers because it supports a useful range of hardware and it
is fairly easy to port to a new device. In this chapter, we learned how to inspect and drive
U-Boot interactively from the command line over a serial console. These command-line
exercises included loading a kernel over a network using TFTP for rapid iteration. Lastly,
we learned how to port U-Boot to a new device by generating a patch for our Nova board.
Over the last few years, the complexity and ever-increasing variety of embedded hardware
has led to the introduction of the device tree as a way of describing hardware. The device
tree is simply a textual representation of a system that is compiled into a device tree binary
(DTB), and which is passed to the kernel when it loads. It is up to the kernel to interpret the
device tree and to load and initialize drivers for the devices it finds there.
In use, U-Boot is very flexible, allowing images to be loaded from mass storage, flash
memory, or a network, and then booted. Having covered some of the intricacies of booting
Linux, in the next chapter, we will cover the next stage of the process as the third element
of your embedded project – the kernel – comes into play.



Chapter 4: Configuring and Building the Kernel
The kernel is the third element of embedded Linux. It is the component that is responsible
for managing resources and interfacing with hardware, and so affects almost every aspect of
your final software build. It is usually tailored to your particular hardware configuration,
although, as we saw in Chapter 3, All About Bootloaders, device trees allow you to create a
generic kernel that is tailored to particular hardware by the contents of the device tree.
In this chapter, we will look at how to get a kernel for a board, and how to configure and
compile it. We will look again at Bootstrap, this time focusing on the part the kernel plays.
We will also look at device drivers and how they pick up information from the device tree.
We will cover the following main topics:

What does the kernel do?
Choosing a kernel
Building the kernel
Booting the kernel
Porting Linux to a new board

Technical requirements
To follow along with the examples, make sure you have the following:

A Linux-based host system
The crosstool-NG toolchains from Chapter 2, Learning About Toolchains
A microSD card reader and card
The microSD card with U-Boot installed from Chapter 3, All About Bootloaders
A USB to TTL 3.3V serial cable
Raspberry Pi 4
A 5V 3A USB-C power supply
BeagleBone Black
A 5V 1A DC power supply

All of the code for this chapter can be found in the Chapter04 folder from the book's
GitHub repository: https://github.com/PacktPublishing/Mastering-Embedded-Linux-
Programming-Third-Edition.

What does the kernel do?

https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


Linux began in 1991 when Linus Torvalds started writing an operating system for Intel 386-
and 486-based personal computers. He was inspired by the Minix operating system written
by Andrew S. Tanenbaum 4 years earlier. Linux differed in many ways from Minix; the
main difference being that it was a 32-bit virtual memory kernel and the code was open
source, later released under the GPL v2 license. He announced it on August 25, 1991, on
the comp.os.minix newsgroup in a famous post that began with the following:



Hello everybody out there using minix—I'm doing a (free) operating system (just
a hobby, won't be big and professional like GNU) for 386(486) AT clones. This
has been brewing since April, and is starting to get ready. I'd like any feedback on
things people like/dislike in minix, as my OS resembles it somewhat (same
physical layout of the filesystem (due to practical reasons) among other things).

To be strictly accurate, Linus did not write an operating system, rather he wrote a kernel,
which is only one component of an operating system. To create a complete operating
system with user space commands and a shell command interpreter, he used components
from the GNU project, especially the toolchain, the C library, and basic command-line
tools. That distinction remains today and gives Linux a lot of flexibility in the way it is
used.
The Linux kernel can be combined with a GNU user space to create a full Linux
distribution that runs on desktops and servers, which is sometimes called GNU/Linux; it
can be combined with an Android user space to create the well-known mobile operating
system, or it can be combined with a small BusyBox-based user space to create a compact
embedded system.
Contrast this with the BSD operating systems, FreeBSD, OpenBSD, and NetBSD, in which
the kernel, the toolchain, and the user space are combined into a single code base. By
removing the toolchain, you can deploy slimmer runtime images without a compiler or
header files. By decoupling user space from the kernel, you gain options in terms of init
systems (runit versus systemd), C libraries (musl versus glibc), and package formats
(.apk versus .deb).
The kernel has three main jobs: to manage resources, to interface with hardware, and to
provide an API that offers a useful level of abstraction to user space programs, as
summarized in the following diagram:



Figure 4.1 − User space, kernel space, and hardware

Applications running in user space run at a low CPU privilege level. They can do very
little other than make library calls. The primary interface between the user space and the
kernel space is the C library, which translates user-level functions, such as those defined
by POSIX, into kernel system calls. The system call interface uses an architecture-specific
method, such as a trap or a software interrupt, to switch the CPU from low-privilege user
mode to high-privilege kernel mode, which allows access to all memory addresses and CPU
registers.
The system call handler dispatches the call to the appropriate kernel subsystem: memory
allocation calls go to the memory manager, filesystem calls to the filesystem code, and so
on. Some of those calls require input from the underlying hardware and will be passed
down to a device driver. In some cases, the hardware itself invokes a kernel function by
raising an interrupt.

IMPORTANT NOTE
The preceding diagram shows that there is a second entry point into kernel code: hardware
interrupts. Interrupts can only be handled in a device driver, never by a user space
application.
In other words, all the useful things that your application does, it does them through the
kernel. The kernel, then, is one of the most important elements in the system. So, it is
important to understand how to choose one – let's do that next.



Choosing a kernel
The next step is to choose the kernel for your project, balancing the desire to always use the
latest version of software against the need for vendor-specific additions and an interest in
the long-term support of the code base.

Kernel development cycle
Linux is developed at a fast pace, with a new version being released every 8 to 12 weeks.
The way that the version numbers are constructed has changed a bit in recent years. Before
July 2011, there was a three-number version scheme with version numbers that looked like
2.6.39. The middle number indicated whether it was a developer or stable release; odd
numbers (2.1.x, 2.3.x, 2.5.x) were for developers and even numbers were for end users.
From version 2.6 onward, the idea of a long-lived development branch (the odd numbers)
was dropped, as it slowed down the rate at which new features were made available to the
users. The change in numbering from 2.6.39 to 3.0 in July 2011 was purely because Linus
felt that the numbers were becoming too large; there was no huge leap in the features or
architecture of Linux between those two versions. He also took the opportunity to drop the
middle number. Since then, in April 2015 and March 2019, he bumped the major from 3 to
4 and 4 to 5 respectively, again purely for neatness, not because of any large architectural
shift.
Linus manages the development kernel tree. You can follow him by cloning the Git tree like
so:

$ git clone
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

This will check out into the subdirectory linux. You can keep up to date by running the git
pull command in that directory from time to time.
Currently, a full cycle of kernel development begins with a merge window of 2 weeks,
during which Linus accepts patches for new features. At the end of the merge window, a
stabilization phase begins, during which Linus produces weekly release candidates with
version numbers ending in -rc1, -rc2, and so on, usually up to -rc7 or -rc8. During this
time, people test the candidates and submit bug reports and fixes. When all significant bugs
have been fixed, the kernel is released.
The code incorporated during the merge window has to be fairly mature already. Usually, it
is pulled from the repositories of the many subsystem and architecture maintainers of the
kernel. By keeping to a short development cycle, features can be merged when they are
ready. If a feature is deemed not sufficiently stable or well developed by the kernel
maintainers, it can simply be delayed until the next release.
Keeping a track of what has changed from release to release is not easy. You can read 
the commit log in Linus' Git repository but, with roughly 10,000 or more entries, it is 
not easy to get an overview. Thankfully, there is the Linux KernelNewbies website,



https://kernelnewbies.org, where you will find a succinct overview of each version at
https://kernelnewbies.org/LinuxVersions.

Stable and long-term support releases
The rapid rate of change of Linux is a good thing in that it brings new features into the
mainline code base, but it does not fit very well with the longer life cycle of embedded
projects. Kernel developers address this in two ways, with stable releases and long-term
releases. After the release of a mainline kernel (maintained by Linus Torvalds), it is moved
to the stable tree (maintained by Greg Kroah-Hartman). Bug fixes are applied to the stable
kernel, while the mainline kernel begins the next development cycle. Point releases of the
stable kernel are marked by a third number, 3.18.1, 3.18.2, and so on. Before version 3,
there were four release numbers, 2.6.29.1, 2.6.39.2, and so on.
You can get the stable tree by using the following command:

$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-
stable.git

You can use git checkout to get a particular version, for example, version 5.4.50:
$ cd linux-stable

$ git checkout v5.4.50

Usually, only the stable kernel is updated until the next mainline release (8 to 12 
weeks later), so you will see that there is just one or sometimes two stable kernels at
https://www.kernel.org/. To cater to those users who would like updates for a longer period
of time and be assured that any bugs will be found and fixed, some kernels are labeled
long-term and maintained for 2 or more years. There is at least one long-term kernel
release each year.
Looking at https://www.kernel.org/ at the time of writing, there are a total of five long-term
kernels: 5.4, 4.19, 4.14, 4.9, and 4.4. The oldest has been maintained for nearly 5 years and
is at version 4.4.256. If you are building a product that you will have to maintain for this
length of time, then the latest long-term kernel (5.4 in this case) might well be a good
choice.
Vendor support
In an ideal world, you would be able to download a kernel from https://www.kernel.org/
and configure it for any device that claims to support Linux. However, that is not always
possible; in fact, mainline Linux has solid support for only a small subset of the many
devices that can run Linux. You may find support for your board or System on Chip (SoC)
from independent open source projects such as Linaro or the Yocto Project, or from
companies providing third-party support for embedded Linux, but in many cases, you will
be obliged to look to the vendor of your SoC or board for a working kernel.
As we know, some vendors are better at supporting Linux than others. My advice at this
point is to choose vendors who give good support or who, even better, take the trouble to
get their kernel changes into the mainline. Search the Linux kernel mailing list or commit
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history for recent activity around a candidate SoC or board. When upstream changes are
absent from the mainline kernel, the verdict as to whether a vendor offers good support is
largely based on word of mouth. Some vendors are notorious for releasing only one kernel
code drop before redirecting all their energies toward their newer SoCs.
Licensing
The Linux source code is licensed under GPL v2, which means that you must make the
source code of your kernel available in one of the ways specified in the license.
The actual text of the license for the kernel is in the COPYING file. It begins with an
addendum written by Linus that states that code calling the kernel from user space via 
the system call interface is not considered a derivative work of the kernel and so is not
covered by the license. Hence, there is no problem with proprietary applications running on
top of Linux.
However, there is one area of Linux licensing that causes endless confusion and debate:
kernel modules. A kernel module is simply a piece of code that is dynamically linked with
the kernel at runtime, thereby extending the functionality of the kernel. The GPL makes no
distinction between static and dynamic linking, so it would appear that the source for kernel
modules is covered by the GPL. But, in the early days of Linux, there were debates about
exceptions to this rule, for example, in connection with the Andrew filesystem. This code
predates Linux and therefore (it was argued) is not a derivative work, and so the license
does not apply.
Similar discussions took place over the years with respect to other pieces of code, with the
result that it is now accepted practice that the GPL does not necessarily apply to kernel
modules. This is codified by the kernel MODULE_LICENSE macro, which may take the
Proprietary value to indicate that it is not released under the GPL. If you plan to use the
same arguments yourself, you may want to read through an oft-quoted email thread titled
Linux GPL and binary module exception clause?, which is archived at
https://yarchive.net/comp/linux/gpl_modules.html.
The GPL should be considered a good thing because it guarantees that when we are
working on embedded projects, we can always get the source code for the kernel. Without
it, embedded Linux would be much harder to use and more fragmented.

Building the kernel
Having decided which kernel to base your build on, the next step is to build it.

Getting the source
All three of the targets used in this book, the Raspberry Pi 4, BeagleBone Black, and the
ARM Versatile PB, are well supported by the mainline kernel. Therefore, it makes sense to
use the latest long-term kernel available from https://www.kernel.org/, which at the time of
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writing was 5.4.50. When you come to do this for yourself, you should check to see if there
is a later version of the 5.4 kernel and use that instead since it will have fixes for bugs found
after 5.4.50 was released.

IMPORTANT NOTE
If there is a later long-term release, you may want to consider using that one, but be aware
that there may have been changes that mean that the following sequence of commands does
not work exactly as given.
To fetch and extract a release tarball of the 5.4.50 Linux kernel, use the following:

$ wget https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.4.50.tar.xz

$ tar xf linux-5.4.50.tar.xz

$ mv linux-5.4.50 linux-stable

To fetch a later version, replace 5.4.50 after linux- with the desired long-term release.
There is a lot of code here. There are over 57,000 files in the 5.4 kernel containing C source
code, header files, and assembly code, amounting to a total of over 14 million lines of code,
as measured by the SLOCCount utility. Nevertheless, it is worth knowing the basic layout
of the code and to know, approximately, where to look for a particular component. The
main directories of interest are the following:

arch: Contains architecture-specific files. There is one subdirectory per architecture.
Documentation: Contains kernel documentation. Always look here first if you want to
find more information about an aspect of Linux.
drivers: Contains device drivers – thousands of them. There is a subdirectory for each
type of driver.
fs: Contains filesystem code.
include: Contains kernel header files, including those required when building 
the toolchain.
init: Contains the kernel startup code.
kernel: Contains core functions, including scheduling, locking, timers, power
management, and debug/trace code.
mm: Contains memory management.
net: Contains network protocols.
scripts: Contains many useful scripts, including the device tree compiler (DTC)
which I described in Chapter 3, All About Bootloaders.
tools: Contains many useful tools, including the Linux performance counters tool,
perf, which I will describe in Chapter 20, Profiling and Tracing.

Over time, you will become familiar with this structure, and realize that if you are looking
for the serial port code of a particular SoC, you will find it in drivers/tty/serial and not
in arch/$ARCH/mach-foo, because it is a device driver and not something CPU architecture-
specific.



Understanding kernel configuration – Kconfig
One of the strengths of Linux is the degree to which you can configure the kernel to suit
different jobs, from a small, dedicated device such as a smart thermostat to a complex
mobile handset. In current versions, there are many thousands of configuration options.
Getting the configuration right is a task in itself, but before we get into that, I want to show
you how it works so that you can better understand what is going on.
The configuration mechanism is called Kconfig, and the build system that it integrates with
is called Kbuild. Both are documented in Documentation/kbuild. Kconfig/Kbuild is used
in a number of other projects as well as the kernel, including crosstool-NG, U-Boot,
Barebox, and BusyBox.
The configuration options are declared in a hierarchy of files named Kconfig, using a
syntax described in Documentation/kbuild/kconfig-language.rst.
In Linux, the top-level Kconfig looks like this:

mainmenu "Linux/$(ARCH) $(KERNELVERSION) Kernel Configuration"

comment "Compiler: $(CC_VERSION_TEXT)"

source "scripts/Kconfig.include"

[…]

And the first line of arch/Kconfig is this:
source "arch/$(SRCARCH)/Kconfig"

That line includes the architecture-dependent configuration file, which sources other
Kconfig files, depending on which options are enabled.
Having the architecture play such a prominent role has three implications:

First, you must specify an architecture when configuring Linux by setting ARCH=
[architecture], otherwise, it will default to the local machine architecture.
Second, the value you set for ARCH usually determines the value of SRCARCH so you
rarely need to set SRCARCH explicitly.
Third, the layout of the top-level menu is different for each architecture.

The value you put into ARCH is one of the subdirectories you find in the arch directory, with
the oddity that ARCH=i386 and ARCH=x86_64 both source arch/x86/Kconfig.
The Kconfig files consist largely of menus, delineated by the menu and endmenu keywords.
Menu items are marked by the config keyword.
Here is an example, taken from drivers/char/Kconfig:

menu "Character devices"

[…]

config DEVMEM

    bool "/dev/mem virtual device support"

    default y

    help



      Say Y here if you want to support the /dev/mem device.

      The /dev/mem device is used to access areas of physical

      memory.

      When in doubt, say "Y".

[…]

endmenu

The parameter following config names a variable that, in this case, is DEVMEM. Since this
option is a bool (Boolean), it can only have two values: if it is enabled, it is assigned to y, if
it is not enabled, the variable is not defined at all. The name of the menu item that is
displayed on the screen is the string following the bool keyword.
This configuration item, along with all the others, is stored in a file named .config.

TIP
The leading dot (.) in .config means that it is a hidden file that will not be shown by the ls
command unless you type ls -a to show all the files.
The line corresponding to this configuration item reads as follows:

CONFIG_DEVMEM=y

There are several other data types in addition to bool. Here is the complete list:
bool: Either y or not defined.
tristate: Used where a feature can be built as a kernel module or built into the main
kernel image. The values are m for a module, y to be built in, and not defined if the
feature is not enabled.
int: An integer value using decimal notation.
hex: An unsigned integer value using hexadecimal notation.
string: A string value.

There may be dependencies between items, expressed by the depends on construct, as
shown here:

config MTD_CMDLINE_PARTS

    tristate "Command line partition table parsing"

    depends on MTD

If CONFIG_MTD has not been enabled elsewhere, this menu option is not shown and so cannot
be selected.
There are also reverse dependencies; the select keyword enables other options if this one
is enabled. The Kconfig file in arch/$ARCH has a large number of select statements that
enable features specific to the architecture, as can be seen here for ARM:

config ARM

    bool

    default y

    select ARCH_CLOCKSOURCE_DATA

    select ARCH_HAS_DEVMEM_IS_ALLOWED



[…]

By selecting ARCH_CLOCKSOURCE_DATA and ARCH_HAS_DEVMEM_IS_ALLOWED, we are
assigning a value of y to these variables so that these features are built statically into the
kernel.
There are several configuration utilities that can read the Kconfig files and produce a
.config file. Some of them display the menus onscreen and allow you to make choices
interactively. menuconfig is probably the one most people are familiar with, but there are
also xconfig and gconfig.
To use menuconfig, you first need to have ncurses, flex, and bison installed. The
following command installs all these prerequisites on Ubuntu:

$ sudo apt install libncurses5-dev flex bison

You launch menuconfig via the make command, remembering that, in the case of the kernel,
you have to supply an architecture, as illustrated here:

$ make ARCH=arm menuconfig

Here, you can see menuconfig with the DEVMEM config option highlighted previously:



Figure 4.2 − Selecting DEVMEM

The star (*) to the left of an item means that the driver has been selected to be built
statically into the kernel or, if it is an M, that it has been selected to be built as a kernel
module for insertion into the kernel at runtime.

TIP
You often see instructions such as enable CONFIG_BLK_DEV_INITRD, but with so many
menus to browse through, it can take a while to find the place where that configuration is
set. All configuration editors have a search function. You can access it in menuconfig by
pressing the forward slash key, /. In xconfig, it is in the Edit menu, but make sure you leave
off the CONFIG_ part of the configuration item you are searching for.
With so many things to configure, it is unreasonable to start with a clean sheet each time
you want to build a kernel, so there is a set of known working configuration files in
arch/$ARCH/configs, each containing suitable configuration values for a single SoC or a
group of SoCs.
You can select one with the make [configuration file name] command. For example, to
configure Linux to run on a wide range of SoCs using the ARMv7-A architecture, you would
type the following:

$ make ARCH=arm multi_v7_defconfig

This is a generic kernel that runs on various different boards. For a more specialized
application, for example, when using a vendor-supplied kernel, the default configuration
file is part of the board support package; you will need to find out which one to use before
you can build the kernel.
There is another useful configuration target named oldconfig. You use it when moving a
configuration to a newer kernel version. This target takes an existing .config file and
prompts you with questions about new configuration options. Copy .config from the old
kernel to the new source directory and run the make ARCH=arm oldconfig command to
bring it up to date.
The oldconfig target can also be used to validate a .config file that you have edited
manually (ignoring the text Automatically generated file; DO NOT EDIT that occurs at
the top; sometimes it is OK to ignore warnings).
If you do make changes to the configuration, the modified .config file becomes part of
your board support package and needs to be placed under source code control.
When you start the kernel build, a header file, include/generated/autoconf.h, is
generated, which contains a #define for each configuration value so that it can be included
in the kernel source.
Now that we've settled on a kernel and learned how to configure it, we will now go about
identifying our kernel.

Using LOCALVERSION to identify your kernel



You can discover the kernel version and release that you have built using the make
kernelversion and make kernelrelease targets:

$ make ARCH=arm kernelversion

5.4.50

$ make ARCH=arm kernelrelease

5.4.50

This is reported at runtime through the uname command and is also used in naming the
directory where kernel modules are stored.
If you change the configuration from the default, it is advisable to append your own version
information, which you can configure by setting CONFIG_LOCALVERSION. As an example, if I
wanted to mark the kernel I am building with the melp identifier and version 1.0, I would
define the local version in menuconfig like this:

Figure 4.3 – Appending to kernel release version



Running make kernelversion produces the same output as before, but now if I run make
kernelrelease, I see the following:

$ make ARCH=arm kernelrelease

5.4.50-melp-v1.0

That was a pleasant detour into kernel versioning, but now let's get back to the business of
configuring our kernel for compilation.

When to use kernel modules
I have mentioned kernel modules several times already. Desktop Linux distributions use
them extensively so that the correct device and kernel functions can be loaded at runtime,
depending on the hardware detected and features required. Without them, every single
driver and feature would have to be statically linked into the kernel, making it infeasibly
large.
On the other hand, with embedded devices, the hardware and kernel configuration are
usually known at the time the kernel is built, and therefore modules are not so useful. In
fact, they cause a problem because they create a version dependency between the kernel
and the root filesystem, which can cause boot failures if one is updated but not the other.
Consequently, it is quite common for embedded kernels to be built without any modules at
all.
Here are a few cases where kernel modules are a good idea in embedded systems:

When you have proprietary modules, for the licensing reasons given in the preceding
section.
To reduce boot time by deferring the loading of non-essential drivers.
When there are several drivers that could be loaded, and it would take up too much
memory to compile them statically. For example, you have a USB interface that
supports a range of devices. This is essentially the same argument as is used in desktop
distributions.

Next, let's learn how to compile a kernel image with or without kernel modules 
using Kbuild.

Compiling – Kbuild
The kernel build system, Kbuild, is a set of make scripts that take the configuration
information from the .config file, work out the dependencies, and compile everything that
is necessary to produce a kernel image. This kernel image contains all the statically linked
components, possibly a device tree binary, and possibly one or more kernel modules. The
dependencies are expressed in makefiles that are in each directory with buildable
components. For instance, the following two lines are taken from drivers/char/Makefile:



obj-y += mem.o random.o

obj-$(CONFIG_TTY_PRINTK) += ttyprintk.o

The obj-y rule unconditionally compiles a file to produce the target, so mem.c and
random.c are always part of the kernel. In the second line, ttyprintk.c is dependent on a
configuration parameter. If CONFIG_TTY_PRINTK is y, it is compiled as a built-in; if it is m, it
is built as a module; and if the parameter is undefined, it is not compiled at all.
For most targets, just typing make (with the appropriate ARCH and CROSS_COMPILE) will do
the job, but it is instructive to take it one step at a time. See the last section of Chapter 2,
Learning about Toolchains, for the meaning of the CROSS_COMPILE make variable.

Finding out which kernel target to build
To build a kernel image, you need to know what your bootloader expects. This is a 
rough guide:

U-Boot: Traditionally, U-Boot has required uImage, but newer versions can load 
a zImage file using the bootz command.
x86 targets: Requires a bzImage file.
Most other bootloaders: Require a zImage file.

Here is an example of building a zImage file:
$ make -j 4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf- zImage

TIP
The -j 4 option tells make how many jobs to run in parallel, which reduces the time taken
to build. A rough guide is to run as many jobs as you have 
CPU cores.
There is a small issue with building a uImage file for ARM with multi-platform support,
which is the norm for the current generation of ARM SoC kernels. Multi-platform support
for ARM was introduced in Linux 3.7. It allows a single kernel binary to run on multiple
platforms and is a step on the road toward having a small number of kernels for all ARM
devices. The kernel selects the correct platform by reading the machine number or the
device tree passed to it by the bootloader. The problem occurs because the location of
physical memory might be different for each platform, and so the relocation address for the
kernel (usually 0x8000 bytes from the start of physical RAM) might also be different.
The relocation address is coded into the uImage header by the mkimage command when the
kernel is built, but it will fail if there is more than one relocation address to choose from. To
put it another way, the uImage format is not compatible with multi-platform images. You
can still create a uImage binary from a multi-platform build, so long as you give the
LOADADDR of the particular SoC you are hoping to boot this kernel on. You can find the load
address by looking in arch/$ARCH/mach-[your SoC]/Makefile.boot and noting the value
of zreladdr-y:



$ make -j 4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf-
LOADADDR=0x80008000 uImage

Regardless of which kernel image format we target, the same two build artifacts are first
created before the bootable image is generated.

Build artifacts
A kernel build generates two files in the top-level directory: vmlinux and System.map. 
The first, vmlinux, is the kernel as an ELF binary. If you have compiled your kernel with
debug enabled (CONFIG_DEBUG_INFO=y), it will contain debug symbols that can be used with
debuggers such as kgdb. You can also use other ELF binary tools, such as size to measure
the length of each section (text, data, and bss) that comprises the vmlinux executable:

$ arm-cortex_a8-linux-gnueabihf-size vmlinux

   text    data      bss      dec      hex      filename

14005643   7154342   403160   21563145  1490709  vmlinux

The dec and hex values are the total file size in decimal and hexadecimal respectively.
System.map contains the symbol table in a human-readable form.
Most bootloaders cannot handle ELF code directly. There is a further stage of processing
that takes vmlinux and places those binaries in arch/$ARCH/boot that are suitable for the
various bootloaders:

Image: vmlinux converted to raw binary format.
zImage: For the PowerPC architecture, this is just a compressed version of Image,
which implies that the bootloader must do the decompression. For all other
architectures, the compressed Image is piggybacked onto a stub of code that
decompresses and relocates it.
uImage: zImage plus a 64-byte U-Boot header.

While the build is running, you will see a summary of the commands being executed:
$ make -j 4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf- \

zImage

  CC      scripts/mod/empty.o

  CC      scripts/mod/devicetable-offsets.s

  MKELF   scripts/mod/elfconfig.h

  HOSTCC  scripts/mod/modpost.o

  HOSTCC  scripts/mod/sumversion.o

[…]

Sometimes, when the kernel build fails, it is useful to see the actual commands being
executed. To do that, add V=1 to the command line:

$ make -j 4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf- \

V=1 zImage

[…]



arm-cortex_a8-linux-gnueabihf-gcc -Wp,-
MD,drivers/tty/.tty_baudrate.o.d  -nostdinc -isystem /home/frank/x-
tools/arm-cortex_a8-linux-gnueabihf/lib/gcc/arm-cortex_a8-linux-
gnueabihf/8.3.0/include -I./arch/arm/include -
I./arch/arm/include/generated  -I./include -I./arch/arm/include/uapi -
I./arch/arm/include/generated/uapi -I./include/uapi -
I./include/generated/uapi -include ./include/linux/kconfig.h -include
./include/linux/compiler_types.h -D__KERNEL__ -mlittle-endian -Wall -
Wundef -Werror=strict-prototypes -Wno-trigraphs -fno-strict-aliasing -
fno-common -fshort-wchar -fno-PIE -Werror=implicit-function-declaration
-Werror=implicit-int -Wno-format-security -std=gnu89 -fno-dwarf2-cfi-asm
-fno-ipa-sra -mabi=aapcs-linux -mfpu=vfp -funwind-tables -marm -Wa,-mno-
warn-deprecated -D__LINUX_ARM_ARCH__=7 -march=armv7-a -msoft-float -Uarm
-fno-delete-null-pointer-checks -Wno-frame-address -Wno-format-
truncation -Wno-format-overflow -O2 --param=allow-store-data-races=0 -
Wframe-larger-than=1024 -fstack-protector-strong -Wno-unused-but-set-
variable -Wimplicit-fallthrough -Wno-unused-const-variable -fomit-frame-
pointer -fno-var-tracking-assignments -Wdeclaration-after-statement -
Wvla -Wno-pointer-sign -Wno-stringop-truncation -Wno-array-bounds -Wno-
stringop-overflow -Wno-restrict -Wno-maybe-uninitialized -fno-strict-
overflow -fno-merge-all-constants -fmerge-constants -fno-stack-check -
fconserve-stack -Werror=date-time -Werror=incompatible-pointer-types -
Werror=designated-init -fmacro-prefix-map=./= -Wno-packed-not-
aligned    -DKBUILD_BASENAME='"tty_baudrate"' -
DKBUILD_MODNAME='"tty_baudrate"' -c -o drivers/tty/tty_baudrate.o
drivers/tty/tty_baudrate.c

[…]

In this section, we learned how Kbuild takes a precompiled vmlinux ELF binary 
and converts it into a bootable kernel image. Next, we will look at how we can compile
device trees.

Compiling device trees
The next step is to build the device tree, or trees if you have a multi-platform build. The
dtbs target builds device trees according to the rules in arch/$ARCH/boot/dts/Makefile,
using the device tree source files in that directory. The following is a snippet from building
the dtbs target for multi_v7_defconfig:

$ make ARCH=arm dtbs

[…]

  DTC     arch/arm/boot/dts/alpine-db.dtb

  DTC     arch/arm/boot/dts/artpec6-devboard.dtb

  DTC     arch/arm/boot/dts/at91-kizbox2.dtb

  DTC     arch/arm/boot/dts/at91-nattis-2-natte-2.dtb

  DTC     arch/arm/boot/dts/at91-sama5d27_som1_ek.dtb

[…]

The compiled .dtb files are generated in the same directory as the sources.



Compiling modules
If you have configured some features to be built as modules, you can build them separately
using the modules target:

$ make -j 4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf- \

modules

The compiled modules have a .ko suffix and are generated in the same directory as the
source code, meaning that they are scattered all around the kernel source tree. Finding them
is a little tricky, but you can use the modules_install make target to install them in the
right place. The default location is /lib/modules in your development system, which is
almost certainly not what you want. To install them in the staging area of your root
filesystem (we will talk about root filesystems in the next chapter), provide the path using
INSTALL_MOD_PATH:

$ make -j4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf- \

INSTALL_MOD_PATH=$HOME/rootfs modules_install

Kernel modules are put into the /lib/modules/[kernel version] directory, relative to the
root of the filesystem.

Cleaning kernel sources
There are three make targets for cleaning the kernel source tree:

clean: Removes object files and most intermediates.
mrproper: Removes all intermediate files, including the .config file. Use this target to
return the source tree to the state it was in immediately after cloning or extracting the
source code. If you are curious about the name, Mr. Proper is a cleaning product
common in some parts of the world. The meaning of make mrproper is to give the
kernel sources a really good scrub.
distclean: This is the same as mrproper, but also deletes editor backup files, patch
files, and other artifacts of software development.

We've seen the kernel compilation steps and their resulting outputs. Now let's build some
kernels for the boards we have on hand.

Building a 64-bit kernel for the Raspberry Pi 4
Even though there is already support for the Raspberry Pi 4 in the mainline kernel, I found
the Raspberry Pi Foundation's fork of Linux (https://github.com/raspberrypi/linux) to be
more stable at the time of writing. The 4.19.y branch of that fork is also more actively
maintained than that same fork's rpi-5.4.y branch. This situation may change in the near
future, but for now, let's stick with the 4.19.y branch.

https://github.com/raspberrypi/linux


Since the Raspberry Pi 4 has a 64-bit quad core ARM Cortex-A72 CPU, we will use a GNU
toolchain from Arm that targets AArch64 GNU/Linux to cross-compile a 64-bit kernel for
it. This prebuilt toolchain can be downloaded from https://developer.arm.com/tools-and-
software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads:

$ cd ~

$ wget https://developer.arm.com/-/media/Files/downloads/gnu-a/10.2-
2020.11/binrel/gcc-arm-10.2-2020.11-x86_64-aarch64-none-linux-gnu.tar.xz

$ tar xf gcc-arm-10.2-2020.11-x86_64-aarch64-none-linux-gnu.tar.xz

$ mv gcc-arm-10.2-2020.11-x86_64-aarch64-none-linux-gnu \

gcc-arm-aarch64-none-linux-gnu

gcc-arm-10.2-2020.11-x86_64-aarch64-none-linux-gnu was the current x86_64 Linux-
hosted cross compiler targeting AArch64 GNU/Linux at the time of writing. If
downloading fails, replace 10.2-2020.11 in the preceding commands with whatever the
current release version is now.
Next, install a couple of packages we need to fetch and build the kernel:

$ sudo apt install subversion libssl-dev

Now that you have the requisite toolchain and packages installed, clone the 4.19.y kernel
repo one level deep in a directory named linux and export some prebuilt binaries to a boot
subdirectory:

$ git clone --depth=1 -b rpi-4.19.y
https://github.com/raspberrypi/linux.git

$ svn export https://github.com/raspberrypi/firmware/trunk/boot

$ rm boot/kernel*

$ rm boot/*.dtb

$ rm boot/overlays/*.dtbo

Navigate to the newly cloned linux directory and build the kernel:
$ PATH=~/gcc-arm-aarch64-none-linux-gnu/bin/:$PATH

$ cd linux

$ make ARCH=arm64 CROSS_COMPILE=aarch64-none-linux-gnu- \
bcm2711_defconfig

$ make -j4 ARCH=arm64 CROSS_COMPILE=aarch64-none-linux-gnu-

When the build finishes, copy the kernel image, device tree blobs, and boot parameters to
the boot subdirectory:

$ cp arch/arm64/boot/Image ../boot/kernel8.img

$ cp arch/arm64/boot/dts/overlays/*.dtbo ../boot/overlays/

$ cp arch/arm64/boot/dts/broadcom/*.dtb ../boot/

$ cat << EOF > ../boot/config.txt

enable_uart=1

arm_64bit=1

EOF

$ cat << EOF > ../boot/cmdline.txt

console=serial0,115200 console=tty1 root=/dev/mmcblk0p2 rootwait

EOF



These preceding commands are all found in the script MELP/Chapter04/build-linux-
rpi4-64.sh. Note that the kernel command line written to cmdline.txt must be all on one
line. Let's break these steps down into stages:

1. Clone the rpi-4.19.y branch of the Raspberry Pi Foundation's kernel fork into a
linux directory.

2. Export the contents of the boot subdirectory from the Raspberry Pi Foundation's
firmware repo to a boot directory.

3. Delete the existing kernel image(s), device tree blobs, and device tree overlays from
the boot directory.

4. From the linux directory, build the 64-bit kernel, modules, and device tree for the
Raspberry Pi 4.

5. Copy the newly built kernel image, device tree blobs, and device tree overlays from
arch/arm64/boot/ to the boot directory.

6. Write config.txt and cmdline.txt files out to the boot directory for the Raspberry Pi
4's bootloader to read and pass to the kernel.

Let's look at the settings in config.txt. The enable_uart=1 line enables the serial console
during boot, which is disabled by default. The arm_64bit=1 line instructs the Raspberry Pi
4's bootloader to start the CPU in 64-bit mode and load the kernel image from a file named
kernel8.img instead of the default kernel.img file for 32-bit ARM.
Now, let's look at cmdline.txt. The console=serial0,115200 and console=tty1 kernel
command-line parameters instruct the kernel to output log messages to the serial console as
our kernel boots.

Building a kernel for the BeagleBone Black
In light of the information already given, here is the complete sequence of commands to
build a kernel, the modules, and a device tree for the BeagleBone Black, using the
crosstool-NG ARM Cortex A8 cross compiler:

$ cd linux-stable

$ make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf- mrproper

$ make ARCH=arm multi_v7_defconfig

$ make -j4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf- zImage

$ make -j4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf- modules

$ make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf- dtbs

These commands are in the MELP/Chapter04/build-linux-bbb.sh script.

Building a kernel for QEMU



Here is the sequence of commands to build Linux for the ARM Versatile PB that is
emulated by QEMU, using the crosstool-NG v5TE compiler:

$ cd linux-stable

$ make ARCH=arm CROSS_COMPILE=arm-unknown-linux-gnueabi- mrproper

$ make -j4 ARCH=arm CROSS_COMPILE=arm-unknown-linux-gnueabi- zImage

$ make -j4 ARCH=arm CROSS_COMPILE=arm-unknown-linux-gnueabi- modules

$ make ARCH=arm CROSS_COMPILE=arm-unknown-linux-gnueabi- dtbs

These commands are in the MELP/Chapter04/build-linux-versatilepb.sh script. In this
section, we saw how to compile kernels for our targets using Kbuild. Now, we will learn
about booting up the kernel.

Booting the kernel
Booting Linux is highly device-dependent. In this section, I will show you how it works for
the Raspberry Pi 4, BeagleBone Black, and QEMU. For other target boards, you must
consult the information from the vendor or from the community project, if there is one.
At this point, you should have the kernel image files and the device tree blobs for the
Raspberry Pi 4, BeagleBone Black, and QEMU.

Booting the Raspberry Pi 4
Raspberry Pis use a proprietary bootloader provided by Broadcom instead of U-Boot.
Unlike previous Raspberry Pi models, the Raspberry Pi 4's bootloader resides on an
onboard SPI EEPROM rather than on a microSD card. We still need to put the kernel image
and device tree blobs for the Raspberry Pi 4 on a microSD to boot our 64-bit kernel.
To begin, you need a microSD card with a FAT32 boot partition large enough to hold the
necessary kernel build artifacts. The boot partition needs to be the first partition on the
microSD card. A partition size of 1 GB is sufficient. Insert the microSD card into your card
reader and copy the entire contents of the boot directory to the boot partition. Unmount the
card and insert it into the Raspberry Pi 4. Connect your USB-to-TTL serial cable to the
GND, TXD, and RXD pins on the 40-pin GPIO header (https://learn.adafruit.com/adafruits-
raspberry-pi-lesson-5-using-a-console-cable/connect-the-lead). Next, start a terminal
emulator such as gtkterm. Lastly, power on the Raspberry Pi 4 and you should see the
following output on the serial console:

[    0.000000] Booting Linux on physical CPU 0x0000000000 [0x410fd083]

[    0.000000] Linux version 4.19.127-v8+ (frank@franktop) (gcc version
10.2.1 20201103 (GNU Toolchain for the A-profile Architecture 10.2-
2020.11 (arm-10.16))) #1 SMP PREEMPT Sat Feb 6 16:19:37 PST 2021

[    0.000000] Machine model: Raspberry Pi 4 Model B Rev 1.1

[    0.000000] efi: Getting EFI parameters from FDT:

[    0.000000] efi: UEFI not found.

[    0.000000] cma: Reserved 64 MiB at 0x0000000037400000

https://learn.adafruit.com/adafruits-raspberry-pi-lesson-5-using-a-console-cable/connect-the-lead


[    0.000000] random: get_random_bytes called from
start_kernel+0xb0/0x480 with crng_init=0

[    0.000000] percpu: Embedded 24 pages/cpu s58840 r8192 d31272 u98304

[    0.000000] Detected PIPT I-cache on CPU0

[…]

The sequence will end in kernel panic because the kernel cannot locate a root filesystem on
the microSD card. Kernel panic is explained later in this chapter.

Booting the BeagleBone Black
To begin, you need a microSD card with U-Boot installed, as described in the 
Installing U-Boot section from Chapter 3, All About Bootloaders. Insert the microSD card
into your card reader and from the linux-stable directory, copy the
arch/arm/boot/zImage and arch/arm/boot/dts/am335x-boneblack.dtb files to the boot
partition. Unmount the card and insert it into the BeagleBone Black. Start a terminal
emulator, such as gtkterm, and be prepared to press the spacebar as soon as you see the U-
Boot messages appear. Next, power on the BeagleBone Black and press the space bar. You
should get a U-Boot prompt. Now enter the following commands shown after the U-Boot#
prompt to load Linux and the device tree binary:

U-Boot# fatload mmc 0:1 0x80200000 zImage

reading zImage

7062472 bytes read in 447 ms (15.1 MiB/s)

U-Boot# fatload mmc 0:1 0x80f00000 am335x-boneblack.dtb

reading am335x-boneblack.dtb

34184 bytes read in 10 ms (3.3 MiB/s)

U-Boot# setenv bootargs console=ttyO0

U-Boot# bootz 0x80200000 - 0x80f00000

## Flattened Device Tree blob at 80f00000

Booting using the fdt blob at 0x80f00000

Loading Device Tree to 8fff4000, end 8ffff587 ... OK

Starting kernel ...

[ 0.000000] Booting Linux on physical CPU 0x0

[…]

Note that we set the kernel command line to console=ttyO0. That tells Linux which device
to use for console output, which in this case is the first UART on the board, device ttyO0.
Without this, we would not see any messages after Starting the kernel..., and therefore
would not know whether it was working or not. The sequence would end in a kernel panic,
for reasons I will explain later on.

Booting QEMU



Assuming that you have already installed qemu-system-arm, you can launch it with the
kernel and the .dtb file for the ARM Versatile PB, as follows:

$ QEMU_AUDIO_DRV=none \

qemu-system-arm -m 256M -nographic -M versatilepb -kernel \ zImage

-append "console=ttyAMA0,115200" -dtb versatile-pb.dtb

Note that setting QEMU_AUDIO_DRV to none is just to suppress error messages from QEMU
about missing configurations for the audio drivers, which we do not use. As with the
Raspberry Pi 4 and BeagleBone Black, this will end with kernel panic and the system will
halt. To exit from QEMU, press Ctrl + A and then x (two separate keystrokes). Now, let's
discuss what kernel panic is.

Kernel panic
While things started off well, they ended badly:

[ 1.886379] Kernel panic - not syncing: VFS: Unable to mount root fs on
unknown-block(0,0)

[ 1.895105] ---[ end Kernel panic - not syncing: VFS: Unable to mount
root fs on unknown-block(0, 0)

This is a good example of kernel panic. Kernel panic occurs when the kernel encounters an
unrecoverable error. By default, it will print out a message to the console and then halt. You
can set the panic command-line parameter to allow a few seconds before reboots following
a panic. In this case, the unrecoverable error is no root filesystem, illustrating that a kernel
is useless without a user space to control it. You can supply a user space by providing a root
filesystem, either as a ramdisk or on a mountable mass storage device. We will talk about
how to create a root filesystem in the next chapter, but first I want to describe the sequence
of events that leads up to panic.

Early user space
In order to transition from kernel initialization to user space, the kernel has to mount a root
filesystem and execute a program in that root filesystem. This can be achieved via a
ramdisk or by mounting a real filesystem on a block device. The code for all of this is in
init/main.c, starting with the rest_init() function, which creates the first thread with
PID 1 and runs the code in kernel_init(). If there is a ramdisk, it will try to execute the
program /init, which will take on the task of setting up the user space.
If the kernel fails to find and run /init, it tries to mount a filesystem by calling the
prepare_namespace() function in init/do_mounts.c. This requires a root= command line
to give the name of the block device to use for mounting, usually in this form:

root=/dev/<disk name><partition number>

Or, in this form for SD cards and eMMC:
root=/dev/<disk name>p<partition number>



For example, for the first partition on an SD card, that would be root=/dev/mmcblk0p1. If
the mount succeeds, it will try to execute /sbin/init, followed by 
/etc/init, /bin/init, and then /bin/sh, stopping at the first one that works. The program
can be overridden on the command line. For a ramdisk, use rdinit=, and for a filesystem,
use init=.

Kernel messages
Kernel developers are fond of printing out useful information through liberal use of
printk() and similar functions. The messages are categorized according to importance,
with 0 being the highest:

They are first written to a buffer, __log_buf, the size of which is two to the power 
of CONFIG_LOG_BUF_SHIFT. For example, if CONFIG_LOG_BUF_SHIFT is 16, then __log_buf
is 64 KiB. You can dump the entire buffer using the dmesg command.
If the level of a message is less than the console log level, it is displayed on the console as
well as being placed in __log_buf. The default console log level is 7, meaning that
messages of level 6 and lower are displayed, filtering out KERN_DEBUG, which is level 7. You



can change the console log level in several ways, including by using the loglevel=<level>
kernel parameter, or the dmesg -n <level> command.

The kernel command line
The kernel command line is a string that is passed to the kernel by the bootloader, via the
bootargs variable in the case of U-Boot; it can also be defined in the device tree or set as
part of the kernel configuration in CONFIG_CMDLINE.
We have seen some examples of the kernel command line already, but there are many more.
There is a complete list in Documentation/kernel-parameters.txt. Here is a shorter list
of the most useful ones:

debug: Sets the console log level to the highest level, 8, to ensure that you see all the
kernel messages on the console.
init=: The init program to run from a mounted root filesystem, which defaults to
/sbin/init.
lpj=: Sets loops_per_jiffy to a given constant. There is a description of the
significance of this in the paragraph following this list.
panic=: Behavior when the kernel panics: if it is greater than zero, it gives the number
of seconds before rebooting; if it is zero, it waits forever (this is the default); or if it is
less than zero, it reboots without any delay.
quiet: Sets the console log level to silent, suppressing all but emergency messages.
Since most devices have a serial console, it takes time to output all those strings.
Consequently, reducing the number of messages using this option reduces boot time.
rdinit=: The init program to run from a ramdisk. It defaults to /init.
ro: Mounts the root device as read-only. Has no effect on a ramdisk, which is always
read/write.
root=: The device on which to mount the root filesystem.
rootdelay=: The number of seconds to wait before trying to mount the root device;
defaults to zero. Useful if the device takes time to probe the hardware, but also see
rootwait.
rootfstype=: The filesystem type for the root device. In many cases, it is auto-
detected during mount, but it is required for jffs2 filesystems.
rootwait: Waits indefinitely for the root device to be detected. Usually necessary with
MMC devices.
rw: Mounts the root device as read-write (default).

The lpj parameter is often mentioned in connection with reducing the kernel boot time.
During initialization, the kernel loops for approximately 250 ms to calibrate a delay loop.
The value is stored in the loops_per_jiffy variable and is reported like this:



Calibrating delay loop... 996.14 BogoMIPS (lpj=4980736)

If the kernel always runs on the same hardware, it will always calculate the same value.
You can shave 250 ms off the boot time by adding lpj=4980736 to the command line.
In the next section, we will learn how to port Linux to a new board based on the
BeagleBone Black, our hypothetical Nova board.

Porting Linux to a new board
Porting Linux to a new board can be easy or difficult, depending on how similar your board
is to an existing development board. In Chapter 3, All About Bootloaders, we 
ported U-Boot to a new board, named Nova, which is based on the BeagleBone Black. Very
few changes need to be made to the kernel code, so it is very easy. If you are porting to
completely new and innovative hardware, there will be more to do. We will delve 
deeper into the topic of additional hardware peripherals in Chapter 12, Prototyping with
Breakout Boards.
The organization of architecture-specific code in arch/$ARCH differs from one system to
another. The x86 architecture is pretty clean because most hardware details are detected at
runtime. The PowerPC architecture puts SoC and board-specific files into subdirectory
platforms. The ARM architecture, on the other hand, is quite messy, in part because there is
a lot of variability between the many ARM-based SoCs. Platform-dependent code is put in
directories named mach-*, approximately one per SoC. There are other directories named
plat-*, which contain code common to several versions of an SoC. In the case of the
BeagleBone Black, the relevant directory is arch/arm/mach-omap2. Don't be fooled by the
name though; it contains support for OMAP2, 3, and 4 chips as well as the AM33xx family
of chips that the BeagleBone uses.
In the following sections, I am going to explain how to create a device tree for a new board
and how to key that into the initialization code of Linux.

A new device tree
The first thing to do is create a device tree for the board and modify it to describe the
additional or changed hardware of the Nova board. In this simple case, we will just copy
am335x-boneblack.dts to nova.dts and change the model name to Nova as shown here:

/dts-v1/;

#include "am33xx.dtsi"

#include "am335x-bone-common.dtsi"

#include "am335x-boneblack-common.dtsi"

/ {

        model = "Nova";

        compatible = "ti,am335x-bone-black", "ti,am335x-bone",
"ti,am33xx";



};

[…]

We can build the Nova device tree binary explicitly like this:
$ make ARCH=arm nova.dtb

If we want the device tree for Nova to be compiled by make ARCH=arm dtbs whenever an
AM33xx target is selected, we could add a dependency in arch/arm/boot/dts/Makefile
as follows:

[…]

dtb-$(CONFIG_SOC_AM33XX) +=

    nova.dtb

[…]

We can see the effect of using the Nova device tree by booting the BeagleBone Black,
following the same procedure as in the Booting the BeagleBone Black section, with the
same zImage file as before, but loading nova.dtb in place of am335x-boneblack.dtb. The
following highlighted output is the point at which the machine model is printed out:

Starting kernel ...

[ 0.000000] Booting Linux on physical CPU 0x0

[ 0.000000] Linux version 5.4.50-melp-v1.0-dirty (frank@franktop) (gcc
version 8.3.0 (crosstool-NG crosstool-ng-1.24.0) ) #2 SMP Sat Feb 6
17:19:36 PST 2021

[ 0.000000] CPU: ARMv7 Processor [413fc082] revision 2 (ARMv7),
cr=10c5387d

[ 0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing
instruction cache

[ 0.000000] OF: fdt:Machine model: Nova

[…]

Now that we have a device tree specifically for the Nova board, we could modify it to
describe the hardware differences between Nova and the BeagleBone Black. There are quite
likely to be changes to the kernel configuration as well, in which case you would create a
custom configuration file based on a copy of arch/arm/configs/multi_v7_defconfig.

Setting the board's compatible property
Creating a new device tree means that we can describe the hardware on the Nova board,
selecting device drivers and setting properties to match. But suppose the Nova board needs
different early initialization code than the BeagleBone Black, how can we link that in?
The board setup is controlled by the compatible property in the root node. This is what we
have for the Nova board at the moment:

/ {

    model = "Nova";

    compatible = "ti,am335x-bone-black", "ti,am335x-bone", "ti,am33xx";

};



When the kernel parses this node, it will search for a matching machine for each of the
values of the compatible property, starting on the left and stopping with the first match
found. Each machine is defined in a structure delimited by DT_MACHINE_START and
MACHINE_END macros. In arch/arm/mach-omap2/board-generic.c, we find 
the following:

#ifdef CONFIG_SOC_AM33XX

static const char *const am33xx_boards_compat[] __initconst = {

    "ti,am33xx",

    NULL,

};

DT_MACHINE_START(AM33XX_DT, "Generic AM33XX (Flattened Device Tree)")

    .reserve = omap_reserve,

    .map_io = am33xx_map_io,

    .init_early = am33xx_init_early,

    .init_machine = omap_generic_init,

    .init_late = am33xx_init_late,

    .init_time = omap3_gptimer_timer_init,

    .dt_compat = am33xx_boards_compat,

    .restart = am33xx_restart,

MACHINE_END

#endif

Note that the string array am33xx_boards_compat contains "ti,am33xx", which matches
one of the machines listed in the compatible property. In fact, it is the only match possible,
since there are none for ti,am335x-bone-black or ti,am335x-bone. The structure between
DT_MACHINE_START and MACHINE_END contains a pointer to the string array, and function
pointers for the board setup functions.
You may wonder why to bother with ti,am335x-bone-black and ti,
am335x-bone if they never match anything? The answer is partly that they are placeholders
for the future, but also that there are places in the kernel that contain runtime tests for the
machine using the of_machine_is_compatible() function; for example, in
drivers/net/ethernet/ti/cpsw-common.c:

int ti_cm_get_macid(struct device *dev, int slave, u8 *mac_addr)

{

[…]

    if (of_machine_is_compatible("ti,am33xx"))

        return cpsw_am33xx_cm_get_macid(dev, 0x630, slave, mac_addr);

[…]

Thus, we have to look through not just the mach-* directories but the entire kernel source
code to get a list of all the places that depend on the machine compatible property. In the
5.4 kernel, you will find that there are still no checks for ti,
am335x-bone-black and ti,am335x-bone, but there may be in the future.
Returning to the Nova board, if we want to add machine-specific setup, we can add a
machine in arch/arm/mach-omap2/board-generic.c, like this:



#ifdef CONFIG_SOC_AM33XX

[…]

static const char *const nova_compat[] __initconst = {

    "ti,nova",

    NULL,

};

DT_MACHINE_START(NOVA_DT, "Nova board (Flattened Device Tree)")

    .reserve = omap_reserve,

    .map_io = am33xx_map_io,

    .init_early = am33xx_init_early,

    .init_machine = omap_generic_init,

    .init_late = am33xx_init_late,

    .init_time = omap3_gptimer_timer_init,

    .dt_compat = nova_compat,

    .restart = am33xx_restart,

MACHINE_END

#endif

Then we could change the device tree root node like this:
/ {

    model = "Nova";

    compatible = "ti,nova", "ti,am33xx";

};

Now, the machine will match ti,nova in board-generic.c. We keep ti,am33xx because
we want the runtime tests, such as the one in drivers/net/ethernet/ti/cpsw-common.c,
to continue to work.

Summary
What makes Linux so powerful is the ability to configure the kernel however we need to.
The definitive place to get the kernel source code is https://www.kernel.org/, but you will
probably need to get the source for a particular SoC or board from the vendor of that device
or a third party that supports that device. The customization of the kernel for a particular
target may consist of changes to the core kernel code, additional drivers for devices that are
not in mainline Linux, a default kernel configuration file, and a device tree source file.
Normally, you start with the default configuration for your target board and then tweak it by
running one of the configuration tools, such as menuconfig. One of the things you should
consider at this point is whether the kernel features and drivers should be compiled as
modules or built in. Kernel modules are usually no great advantage for embedded systems,
where the feature set and hardware are usually well defined. However, modules are often
used as a way to import proprietary code into the kernel, and also to reduce boot time by
loading non-essential drivers after booting.

https://www.kernel.org/


Building the kernel produces a compressed kernel image file named zImage , bzImage, or
uImage, depending on the bootloader you will be using and the target architecture. A kernel
build will also generate any kernel modules (as .ko files) that you have configured, and
device tree binaries (as .dtb files) if your target requires them.
Porting Linux to a new target board can be quite simple or very difficult, depending on how
different the hardware is from that in the mainline or vendor-supplied kernel. If your
hardware is based on a well-known reference design, then it may be just a question of
making changes to the device tree or to the platform data. You may well need to add device
drivers, which we'll discuss in Chapter 11, Interfacing with Device Drivers. However, if the
hardware is radically different from a reference design, you may need additional core
support, which is outside the scope of this book.
The kernel is the core of a Linux-based system, but it cannot work by itself. It requires 
a root filesystem that contains the user space components. The root filesystem can be 
a ramdisk or a filesystem accessed via a block device, which will be the subject of the 
next chapter. As we have seen, booting a kernel without a root filesystem results in 
kernel panic.

Additional reading
The following resources have more information about the topics introduced in 
this chapter:

So You Want to Build an Embedded Linux System? by Jay Carlson: 
https://jaycarlson.net/embedded-linux/
Linux Kernel Development, Third Edition, by Robert Love
Linux Weekly News: https://lwn.net
BeagleBone Forum: https://beagleboard.org/discuss#bone_forum_embed
Raspberry Pi Forums: https://www.raspberrypi.org/forums/

https://jaycarlson.net/embedded-linux/
https://lwn.net/
https://beagleboard.org/discuss#bone_forum_embed
https://www.raspberrypi.org/forums/


Chapter 5: Building a 
Root Filesystem
The root filesystem is the fourth and final element of embedded Linux. Once you have read
this chapter, you will be able to build, boot, and run a simple embedded Linux system.
The techniques I will describe here are broadly known as roll your own or RYO. Back in
the early days of embedded Linux, this was the only way to create a root filesystem. There
are still some use cases where an RYO root filesystem is applicable, for example, when the
amount of RAM or storage is very limited, for quick demonstrations, or for any case in
which your requirements are not (easily) covered by the standard build system tools.
Nevertheless, these cases are quite rare. Let me emphasize that the purpose of this chapter
is educational; it is not meant to be a recipe for building everyday embedded systems: use
the tools described in the next chapter for this.
The first objective is to create a minimal root filesystem that will give us a shell prompt.
Then, using this as a base, we will add scripts to start up other programs and configure a
network interface and user permissions. There are worked examples for both the
BeagleBone Black and QEMU targets. Knowing how to build the root filesystem from
scratch is a useful skill, and it will help you to understand what is going on when we look at
more complex examples in later chapters.
In this chapter, we will cover the following topics:

What should be in the root filesystem?
Transferring the root filesystem to the target
Creating a boot initramfs
The init program
Configuring user accounts
A better way of managing device nodes
Configuring the network
Creating filesystem images with device tables
Mounting the root filesystem using NFS
Using TFTP to load the kernel

Technical requirements
To follow along with the examples, make sure you have the following:

A Linux-based host system
A microSD card reader and card



The microSD card prepared for the BeagleBone Black from Chapter 4, Configuring
and Building the Kernel
zImage and DTB for QEMU from Chapter 4, Configuring and Building the Kernel
A USB to TTL 3.3V serial cable
BeagleBone Black
A 5V 1A DC power supply
An Ethernet cable and port for NFS and TFTP

All of the code for this chapter can be found in the Chapter05 folder from the book's
GitHub repository: https://github.com/PacktPublishing/Mastering-Embedded-Linux-
Programming-Third-Edition

What should be in the root filesystem?
The kernel will get a root filesystem, either as an initramfs passed as a pointer from the
bootloader or by mounting the block device given on the kernel command line by the root=
parameter. Once it has a root filesystem, the kernel will execute the first program, by
default named init, as described in the Early user space section in Chapter 4, Configuring
and Building the Kernel. Then, as far as the kernel is concerned, its job is complete. It is up
to the init program to begin starting other programs and bring the system to life.
To make a minimal root filesystem, you need these components:

init: This is the program that starts everything off, usually by running a series of
scripts. I will describe how init works in much more detail in Chapter 13, Starting
Up – The init Program.
Shell: You need a shell to give you a command prompt but, more importantly, also to
run the shell scripts called by init and other programs.
Daemons: A daemon is a background program that provides a service to others. Good
examples are the system log daemon (syslogd) and the secure shell daemon (sshd).
The init program must start the initial population of daemons to support the main
system applications. In fact, init is itself a daemon: it is the daemon that provides the
service of launching other daemons.
Shared libraries: Most programs are linked with shared libraries and so they must be
present in the root filesystem.
Configuration files: The configuration for init and other daemons is stored in a
series of text files, usually in the /etc directory.
Device nodes: These are the special files that give access to various device drivers.
proc and sys: These two pseudo filesystems represent kernel data structures as a
hierarchy of directories and files. Many programs and library functions depend 
on /proc and /sys.

https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


Kernel modules: If you have configured some parts of your kernel to be modules,
they need to be installed in the root filesystem, usually in /lib/modules/[kernel
version].

In addition, there are the device-specific applications that make the device do the job it is
intended for, and also the runtime data files that they generate.

IMPORTANT NOTE
In some cases, you could condense most of the preceding programs into a single, statically-
linked program, and start the program instead of init. For example, if your program was
named /myprog, you would add the following command to the kernel command line
init=/myprog. I have come across such a configuration only once, in a secure system in
which the fork system call had been disabled, thus making it impossible for any other
program to be started. The downside of this approach is that you can't make use of the
many tools that normally go into an embedded system. You have to do everything yourself.

The directory layout
Interestingly, the Linux kernel does not care about the layout of files and directories beyond
the existence of the program named by init= or rdinit=, so you are free to put things
wherever you like. As an example, compare the file layout of a device running Android to
that of a desktop Linux distribution: they are almost completely different.
However, many programs expect certain files to be in certain places, and it helps us
developers if devices use a similar layout, Android aside. The basic layout of most Linux
systems is defined in the Filesystem Hierarchy Standard (FHS), which is available at
https://refspecs.linuxfoundation.org/fhs.shtml. The FHS covers all the implementations of
Linux operating systems, from the largest to the smallest. Embedded devices tend to use a
subset based on their needs, but it usually includes the following:

/bin: Programs essential for all users
/dev: Device nodes and other special files
/etc: System configuration files
/lib: Essential shared libraries, for example, those that make up the C library
/proc: Information about processes represented as virtual files
/sbin: Programs essential to the system administrator
/sys: Information about devices and their drivers represented as virtual files
/tmp: A place to put temporary or volatile files
/usr: Additional programs, libraries, and system administrator utilities, in the 
/usr/bin, /usr/lib, and /usr/sbin directories, respectively
/var: A hierarchy of files and directories that may be modified at runtime, for
example, log messages, some of which must be retained after boot

https://refspecs.linuxfoundation.org/fhs.shtml


There are some subtle distinctions here. The difference between /bin and /sbin is simply
that the latter need not be included in the search path for non-root users. Users of Red Hat-
derived distributions will be familiar with this. The significance of /usr is that it may be in
a separate partition from the root filesystem, so it cannot contain anything that is needed to
boot the system up.

The staging directory
You should begin by creating a staging directory on your host computer where you can
assemble the files that will eventually be transferred to the target. In the following
examples, I have used ~/rootfs. You need to create a skeleton directory structure in it, for
example, take a look here:

$ mkdir ~/rootfs

$ cd ~/rootfs

$ mkdir bin dev etc home lib proc sbin sys tmp usr var

$ mkdir usr/bin usr/lib usr/sbin

$ mkdir -p var/log

To see the directory hierarchy more clearly, you can use the handy tree command used in
the following example with the -d option to show only the directories:

$ tree -d

.

├── bin

├── dev

├── etc

├── home

├── lib

├── proc

├── sbin

├── sys

├── tmp

├── usr

│   ├── bin

│   ├── lib

│   └── sbin

└── var

    └── log

As we shall see, not all directories have the same file permissions and the individual files
inside a directory can have stricter permissions than the directory itself.

POSIX file access permissions



Every process, which in the context of this discussion means every running program,
belongs to a user and one or more groups. The user is represented by a 32-bit number called
the user ID or UID. Information about users, including the mapping from a UID to a name,
is kept in /etc/passwd. Likewise, groups are represented by a group ID or GID with
information kept in /etc/group. There is always a root user with a UID of 0 and a root
group with a GID of 0. The root user is also called the superuser because, in a default
configuration, it bypasses most permission checks and can access all the resources in the
system. Security in Linux-based systems is mainly about restricting access to the root
account.
Each file and directory also has an owner and belongs to exactly one group. The level of
access a process has to a file or directory is controlled by a set of access permission flags,
called the mode of the file. There are 3 collections of 3 bits: the first collection applies to
the owner of the file, the second to the members of the same group as the file, and the last to
everyone else – the rest of the world. The bits are for read (r), write (w), and execute (x)
permissions on the file. Since 3 bits fit neatly into an octal digit, they are usually
represented in octal, as shown in the following diagram:

Figure 5.1 – File access permissions

There is a fourth preceding octal digit whose value has special significance:
SUID (4): If the file is executable, it changes the effective UID of the process to that
of the owner of the file when the program is run.
SGID (2): Similar to SUID, this changes the effective GID of the process to that of the
group of the file.
Sticky (1): In a directory, this restricts deletion so that one user cannot delete files that
are owned by another user. This is usually set on /tmp and /var/tmp.

The SUID bit is probably used most often. It gives non-root users a temporary privilege
escalation to superuser to perform a task. A good example is the ping program: ping opens
a raw socket, which is a privileged operation. In order for normal users to use ping, it is
owned by the user root and has the SUID bit set so that when you run ping, it executes
with UID 0 regardless of your UID.
To set this leading octal digit, use values of either 4, 2, or 1 with the chmod command. For
example, to set SUID on /bin/ping in your staging root directory, you would prepend 4 to
a mode of 755 like so:

$ cd ~/rootfs



$ ls -l bin/ping

-rwxr-xr-x 1 root root 35712 Feb 6 09:15 bin/ping

$ sudo chmod 4755 bin/ping

$ ls -l bin/ping

-rwsr-xr-x 1 root root 35712 Feb 6 09:15 bin/ping

Note that the second ls command shows the first 3 bits of the mode to be rws, whereas
previously they had been rwx. That s indicates that the SUID bit is set.

File ownership permissions in the staging directory
For security and stability reasons, it is vitally important to pay attention to the ownership
and permissions of the files that will be placed on the target device. Generally speaking,
you want to restrict sensitive resources to be accessible only by the root user and run as
few programs using non-root users as possible. It is best to run programs using non-root
users so that if they are compromised by an outside attack, they offer as few system
resources to the attacker as possible. For example, the device node called /dev/mem gives
access to system memory, which is necessary in some programs. But, if it is readable and
writeable by everyone, then there is no security because everyone can access everything in
memory. So, /dev/mem should be owned by root, belong to the root group, and have a
mode of 600, which denies read and write access to all but the owner.
There is a problem with the staging directory though. The files you create there will be
owned by you, but when they are installed on the device, they should belong to specific
owners and groups, mostly the root user. An obvious fix is to change the ownership to
root at this stage with the commands shown here:

$ cd ~/rootfs

$ sudo chown -R root:root *

The problem is that you need root privileges to run the chown command, and from that
point onward, you will need to be root to modify any files in the staging directory. Before
you know it, you are doing all your development logged on as root, which is not a good
idea. This is a problem that we will come back to later.

Programs for the root filesystem
Now, it is time to start populating the root filesystem with the essential programs and the
supporting libraries, configuration, and data files that they need to operate. I will begin with
an overview of the types of programs you will need.
The init program
init is the first program to be run, and so it is an essential part of the root filesystem. In
this chapter, we will be using the simple init program provided by BusyBox.
Shell



We need a shell to run scripts and to give us a command prompt so that we can interact with
the system. An interactive shell is probably not necessary on a production device, but it is
useful for development, debugging, and maintenance. There are various shells in common
use in embedded systems:

bash: This is the big beast that we all know and love from desktop Linux. It is a
superset of the Unix Bourne shell with many extensions or bashisms.
ash: Also based on the Bourne shell, it has a long history with the BSD variants of
Unix. BusyBox has a version of ash, which has been extended to make it more
compatible with bash. It is much smaller than bash and hence it is a very popular
choice for embedded systems.
hush: This is a very small shell that we briefly looked at in Chapter 3, All about
Bootloaders. It is useful on devices with very little memory. There is a version of hush
in BusyBox.

TIP
If you are using ash or hush as the shell on the target, make sure that you
test your shell scripts on the target. It is very tempting to test them only on
the host, using bash, and then be surprised that they don't work when you
copy them to the target.

Next on the list is utilities.
Utilities
The shell is just a way of launching other programs, and a shell script is little more than a
list of programs to run, with some flow control and a means of passing information between
programs. To make a shell useful, you need the utility programs that the Unix command
line is based on. Even for a basic root filesystem, you need approximately 50 utilities,
which presents two problems. Firstly, tracking down the source code for each one and
cross-compiling it would be quite a big job. Secondly, the resulting collection of programs
would take up several tens of megabytes, which was a real problem in the early days of
embedded Linux when a few megabytes was all you had. To solve this problem, BusyBox
was born.
BusyBox to the rescue!
The genesis of BusyBox had nothing to do with embedded Linux. The project was
instigated in 1996 by Bruce Perens for the Debian installer so that he could boot Linux from
a 1.44 MB floppy disk. Coincidentally, this was about the size of the storage on
contemporary devices, and so the embedded Linux community quickly took it up. BusyBox
has been at the heart of embedded Linux ever since.
BusyBox was written from scratch to perform the essential functions of those essential
Linux utilities. The developers took advantage of the 80:20 rule: the most useful 80% of a
program is implemented in 20% of the code. Hence, BusyBox tools implement a subset of
the functions of the desktop equivalents, but they do enough of it to be useful in the
majority of cases.



Another trick BusyBox employs is to combine all the tools together into a single binary,
making it easy to share code between them. It works like this: BusyBox is a collection 
of applets, each of which exports its main function in the form [applet]_main. 
For example, the cat command is implemented in coreutils/cat.c and exports cat_main.
The main function of BusyBox itself dispatches the call to the correct applet, based on the
command-line arguments.
So, to read a file, you can launch BusyBox with the name of the applet you want to run,
followed by any arguments the applet expects, as shown here:

$ busybox cat my_file.txt

You can also run BusyBox with no arguments to get a list of all the applets that have 
been compiled.
Using BusyBox in this way is rather clumsy. A better way to get BusyBox to run the cat
applet is to create a symbolic link from /bin/cat to /bin/busybox:

$ ls -l bin/cat bin/busybox

-rwxr-xr-x 1 root root 892868 Feb 2 11:01 bin/busybox

lrwxrwxrwx 1 root root 7      Feb 2 11:01 bin/cat -> busybox

When you type cat at the command line, BusyBox is the program that actually runs.
BusyBox only has to check the path to the executable passed in via argv[0], which 
will be /bin/cat, extract the application name, cat, and do a table lookup to match cat
with cat_main. All this is done in libbb/appletlib.c in this section of code (slightly
simplified):

applet_name = argv[0];

applet_name = bb_basename(applet_name);

run_applet_and_exit(applet_name, argv);

BusyBox has over 300 applets, including an init program, several shells of varying levels
of complexity, and utilities for most admin tasks. There is even a simple version of the vi
editor so you can change text files on your device. A typical BusyBox binary will only
enable several dozen applets.
To summarize, a typical installation of BusyBox consists of a single program with 
a symbolic link for each applet, but it behaves exactly as if it were a collection of 
individual applications.
Building BusyBox
BusyBox uses the same Kconfig and Kbuild system as the kernel, so cross-compiling is
straightforward. You can get the source by cloning the BusyBox Git repo and checking out
the version you want (1_31_1 was the latest at the time of writing), as follows:

$ git clone git://busybox.net/busybox.git

$ cd busybox

$ git checkout 1_31_1

You can also download the corresponding TAR file from https://busybox.net/downloads/.
Then, configure BusyBox by starting with the default configuration, which enables pretty
much all of the features of BusyBox:

https://busybox.net/downloads/


$ make distclean

$ make defconfig

At this point, you probably want to run make menuconfig to fine-tune the configuration.
For example, you almost certainly want to set the install path in Busybox Settings |
Installation Options (CONFIG_PREFIX) to point to the staging directory. Then, you can
cross-compile in the usual way. If your intended target is the BeagleBone Black, use this
command:

$ make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf-

If your intended target is the QEMU emulation of a Versatile PB, use this command:
$ make ARCH=arm CROSS_COMPILE=arm-unknown-linux-gnueabi-

In either case, the result is the executable busybox. For a default configuration build like
this, the size is about 900 KiB. If this is too big for you, you can slim it down by changing
the configuration to leave out the utilities you don't need.
To install BusyBox into the staging area, use the following command:

$ make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf- install

This will copy the binary to the directory configured in CONFIG_PREFIX and create all the
symbolic links to it.
Now we will look at an alternative to Busybox known as ToyBox.
ToyBox – an alternative to BusyBox
BusyBox is not the only game in town. In addition, there is ToyBox, which you can find at
http://landley.net/toybox/. The project was started by Rob Landley, who was previously a
maintainer of BusyBox. ToyBox has the same aim as BusyBox, but with more emphasis on
complying with standards, especially POSIX-2008 and LSB 4.1, and less on compatibility
with GNU extensions to those standards. ToyBox is smaller than BusyBox, partly because
it implements fewer applets. And its license is BSD rather than GPL v2, making it
compatible with operating systems that have a BSD-licensed user space, such as Android.
Hence, ToyBox ships with all new Android devices. As of the recent 0.8.3 release, Toybox's
Makefile can build a full Linux system that boots to a shell prompt given just the Linux
and ToyBox sources.

Libraries for the root filesystem
Programs are linked with libraries. You could link them all statically, in which case, there
would be no libraries on the target device. But, this takes up an unnecessarily large amount
of storage if you have more than two or three programs. So, you need to copy shared
libraries from the toolchain to the staging directory. How do you know which libraries?
One option is to copy all of the .so files from the sysroot directory of your toolchain.
Instead of trying to predict which libraries to include, just assume that your image will
eventually need them all. This is certainly logical and, if you are creating a platform to be
used by others for a range of applications, it would be the correct approach. Be aware,
though, that a full glibc is quite large. In the case of a crosstool-NG build of glibc 2.22,

http://landley.net/toybox/


the libraries, locales, and other supporting files come to 33 MiB. Of course, you could cut
down on that considerably using musl libc or uClibc-ng.
Another option is to cherry-pick only those libraries that you require, for which you need a
means of discovering library dependencies. Using some of our knowledge from Chapter 2,
Learning about Toolchains, we can use the readelf command for this task:

$ cd ~/rootfs

$ arm-cortex_a8-linux-gnueabihf-readelf -a bin/busybox | grep "program
interpreter"

[Requesting program interpreter: /lib/ld-linux-armhf.so.3]

$ arm-cortex_a8-linux-gnueabihf-readelf -a bin/busybox | grep "Shared
library"

0x00000001 (NEEDED) Shared library: [libm.so.6]

0x00000001 (NEEDED) Shared library: [libc.so.6]

The first readelf command searches the busybox binary for lines containing program
interpreter. The second readelf command searches the busybox binary for lines
containing Shared library. Now, you need to find these files in the toolchain sysroot
directory and copy them to the staging directory. Remember that you can find sysroot like
this:

$ arm-cortex_a8-linux-gnueabihf-gcc -print-sysroot

/home/chris/x-tools/arm-cortex_a8-linux-gnueabihf/arm-cortex_a8-linux-
gnueabihf/sysroot

To reduce the amount of typing, I am going to keep a copy of that in a shell variable:
$ export SYSROOT=$(arm-cortex_a8-linux-gnueabihf-gcc -print-sysroot)

If you look at /lib/ld-linux-armhf.so.3 in sysroot, you will see that it is in fact a
symbolic link:

$ cd $SYSROOT

$ ls -l lib/ld-linux-armhf.so.3

lrwxrwxrwx 1 chris chris 10 Mar 3 15:22 lib/ld-linux-armhf.so.3 -> ld-
2.22.so

Repeat the exercise for libc.so.6 and libm.so.6, and you will end up with a list of three
files and three symbolic links. Now, you can copy each one using cp -a, which will
preserve the symbolic link:

$ cd ~/rootfs

$ cp -a $SYSROOT/lib/ld-linux-armhf.so.3 lib

$ cp -a $SYSROOT/lib/ld-2.22.so lib

$ cp -a $SYSROOT/lib/libc.so.6 lib

$ cp -a $SYSROOT/lib/libc-2.22.so lib

$ cp -a $SYSROOT/lib/libm.so.6 lib

$ cp -a $SYSROOT/lib/libm-2.22.so lib

Repeat this procedure for each program.

TIP



It is only worth doing this to get the very smallest embedded footprint possible. There is a
danger that you will miss libraries that are loaded through dlopen(3) calls – plugins
mostly. We will look at an example with the name service switch (NSS) libraries when we
come to configure network interfaces later on in this chapter.
Reducing the size by stripping
Libraries and programs are often compiled with some information stored in symbol tables
to aid debugging and tracing. You seldom need these in a production system. A quick and
easy way to save space is to strip the binaries of symbol tables. This example shows libc
before stripping:

$ file rootfs/lib/libc-2.22.so

lib/libc-2.22.so: ELF 32-bit LSB shared object, ARM, EABI5 version 1
(GNU/Linux), dynamically linked (uses shared libs), for GNU/Linux 4.3.0,
not stripped

$ ls -og rootfs/lib/libc-2.22.so

-rwxr-xr-x 1 1542572 Mar 3 15:22 rootfs/lib/libc-2.22.so

Now, let's see the result of stripping the debug information:
$ arm-cortex_a8-linux-gnueabihf-strip rootfs/lib/libc-2.22.so

$ file rootfs/lib/libc-2.22.so

rootfs/lib/libc-2.22.so: ELF 32-bit LSB shared object, ARM, EABI5
version 1 (GNU/Linux), dynamically linked (uses shared libs), for
GNU/Linux 4.3.0, stripped

$ ls -og rootfs/lib/libc-2.22.so

-rwxr-xr-x 1 1218200 Mar 22 19:57 rootfs/lib/libc-2.22.so

In this case, we saved 324,372 bytes, or about 20% of the size of the file before stripping.

TIP
Be careful about stripping kernel modules. Some symbols are required by the module loader
to relocate the module code, and so the module will fail to load if they are stripped out. Use
this command to remove debug symbols while keeping those used for relocation: strip --
strip-unneeded <module name>.

Device nodes
Most devices in Linux are represented by device nodes, in accordance with the Unix
philosophy that everything is a file (except network interfaces, which are sockets). A device
node may refer to a block device or a character device. Block devices are mass storage
devices, such as SD cards or hard drives. A character device is pretty much anything else,
once again, with the exception of network interfaces. The conventional location for device
nodes is the directory called /dev. For example, a serial port may be represented by the
device node called /dev/ttyS0.
Device nodes are created using the program named mknod (short for make node):

mknod <name> <type> <major> <minor>



The parameters to mknod are as follows:
name is the name of the device node that you want to create.
type is either c for character devices or b for a block device.
major and minor are a pair of numbers that are used by the kernel to route file requests
to the appropriate device driver code. There is a list of standard major and minor
numbers in the kernel source in the Documentation/devices.txt file.

You will need to create device nodes for all the devices you want to access on your 
system. You can do so manually using the mknod command as I will illustrate here or 
you can create them automatically at runtime using one of the device managers that I 
will mention later.
In a really minimal root filesystem, you need just two nodes to boot with BusyBox:
console and null. The console only needs to be accessible to root, the owner of the device
node, so the access permissions are 600 (rw-------). The null device should be readable
and writable by everyone, so the mode is 666 (rw-rw-rw-). You can use the -m option for
mknod to set the mode when creating the node. You need to be root to create device nodes,
as shown here:

$ cd ~/rootfs

$ sudo mknod -m 666 dev/null c 1 3

$ sudo mknod -m 600 dev/console c 5 1

$ ls -l dev

total 0

crw------- 1 root root 5, 1 Mar 22 20:01 console

crw-rw-rw- 1 root root 1, 3 Mar 22 20:01 null

You can delete device nodes using the standard rm command. There is no rmnod command
because, once created, they are just files.

The proc and sysfs filesystems
proc and sysfs are two pseudo filesystems that give a window into the inner workings of
the kernel. They both represent kernel data as files in a hierarchy of directories: when you
read one of the files, the contents you see do not come from disk storage; it has been
formatted on the fly by a function in the kernel. Some files are also writable, meaning that a
kernel function is called with the new data you have written and, if it is of the correct
format and you have sufficient permissions, it will modify the value stored in the kernel's
memory. In other words, proc and sysfs provide another way to interact with device
drivers and other kernel code. The proc and sysfs filesystems should be mounted on the
directories called /proc and /sys:

# mount -t proc proc /proc

# mount -t sysfs sysfs /sys



Although they are very similar in concept, they perform different functions. proc has been
part of Linux since the early days. Its original purpose was to expose information about
processes to the user space, hence the name. To this end, there is a directory for each
process named /proc/<PID>, which contains information about its state. The process list
command, ps, reads these files to generate its output. In addition, there are files that give
information about other parts of the kernel, for example, /proc/cpuinfo tells you about the
CPU, /proc/interrupts has information about interrupts, and so on.
Finally, in /proc/sys, there are files that display and control the state and behavior of
kernel subsystems, especially scheduling, memory management, and networking. The
manual page is the best reference for the files you will find in the proc directory, which you
can see by typing man 5 proc.
On the other hand, the role of sysfs is to present the kernel driver model to the user space.
It exports a hierarchy of files relating to devices and device drivers and the way they are
connected to each other. I will go into more detail on the Linux driver model when I
describe the interaction with device drivers in Chapter 11, Interfacing with Device Drivers.
Mounting filesystems
The mount command allows us to attach one filesystem to a directory within another,
forming a hierarchy of filesystems. The one at the top, which was mounted by the 
kernel when it booted, is called the root filesystem. The format of the mount command 
is as follows:

mount [-t vfstype] [-o options] device directory

The parameters of mount are as follows:
vfstype is the type of filesystem.
options is a comma-separated list of mount options.
device is the block device node the filesystem resides on.
directory is the directory you want to mount the filesystem on.

There are various options you can give after -o; have a look at the manual page mount(8)
for more information. As an example, if you wanted to mount an SD card containing an
ext4 filesystem in the first partition onto the directory called /mnt, you would type the
following code:

# mount -t ext4 /dev/mmcblk0p1 /mnt

Assuming the mount succeeds, you would be able to see the files stored on the SD card in
the /mnt directory. In some cases, you can leave out the filesystem type and let the kernel
probe the device to find out what is stored there. If mounting fails, you may first need to
unmount the partition in case your Linux distro is configured to automount all the partitions
on an SD card when it is inserted.
Looking at the example of mounting the proc filesystem, there is something odd: there is
no device node, such as /dev/proc, since it is a pseudo filesystem and not a real one. But
the mount command requires a device parameter. Consequently, we have to give a string



where device should go, but it does not matter much what that string is. These two
commands achieve exactly the same result:

# mount -t proc procfs /proc

# mount -t proc nodevice /proc

The procfs and nodevice strings are ignored by the mount command. It is fairly common
to use the filesystem type in place of the device when mounting pseudo filesystems.

Kernel modules
If you have kernel modules, they need to be installed into the root filesystem, using the
modules_install kernel make target, as we saw in Chapter 4, Configuring and Building
the Kernel. This will copy them into the directory called /lib/modules/<kernel version>
together with the configuration files needed by the modprobe command.
Be aware that you have just created a dependency between the kernel and the root
filesystem. If you update one, you will have to update the other.
Now that we know how to mount a filesystem from an SD card, let's take a look at different
options for mounting a root filesystem. The alternatives (ramdisk and NFS) may surprise
you, especially if you are new to embedded Linux. A ramdisk protects the original source
image from corruption and wear. We'll learn more about flash ware in Chapter 9, Creating
a Storage Strategy. A network filesystem allows more rapid development because file
changes can propagate instantly to the target(s).

Transferring the root filesystem to the target
After having created a skeleton root filesystem in your staging directory, the next task is to
transfer it to the target. In the sections that follow, I will describe three possibilities:

initramfs: Also known as a ramdisk, this is a filesystem image that is loaded into
RAM by the bootloader. Ramdisks are easy to create and have no dependencies on
mass storage drivers. They can be used in fallback maintenance mode when the main
root filesystem needs updating. They can even be used as the main root filesystem in
small embedded devices, and they are commonly used as the early user space in
mainstream Linux distributions. Remember that the contents of the root filesystem are
volatile, and any changes you make in the root filesystem at runtime will be lost when
the system next boots. You would need another storage type to store permanent data
such as configuration parameters.
Disk image: This is a copy of the root filesystem formatted and ready to be loaded
onto a mass storage device on the target. For example, it could be an image in the ext4
format ready to be copied onto an SD card, or it could be in the jffs2 format ready to
be loaded into flash memory via the bootloader. Creating a disk image is probably the
most common option. There is more information about the different types of mass
storage in Chapter 9, Creating a Storage Strategy.



Network filesystem: The staging directory can be exported to the network via an NFS
server and mounted by the target at boot time. This is often done during the
development phase, in preference to repeated cycles of creating a disk image and
reloading it onto the mass storage device, which is quite a slow process.

I will start with ramdisk, and use it to illustrate a few refinements to the root filesystem,
such as adding usernames and a device manager to create device nodes automatically. Then,
I will show you how to create a disk image and how to use NFS to mount the root
filesystem over a network.

Creating a boot initramfs
An initial RAM filesystem, or initramfs, is a compressed cpio archive. cpio is an old
Unix archive format, similar to TAR and ZIP but easier to decode and so requiring less code
in the kernel. You need to configure your kernel with CONFIG_BLK_DEV_INITRD to support
initramfs.
As it happens, there are three different ways to create a boot ramdisk: as a standalone cpio
archive, as a cpio archive embedded in the kernel image, and as a device table that the
kernel build system processes as part of the build. The first option gives the most flexibility
because we can mix and match kernels and ramdisks to our heart's content. However, it
means that you have two files to deal with instead of one, and not all bootloaders have the
facility to load a separate ramdisk. I will show you how to build one into the kernel later.

Standalone initramfs
The following sequence of instructions creates the archive, compresses it, and adds a U-
Boot header ready for loading onto the target:

$ cd ~/rootfs

$ find . | cpio -H newc -ov --owner root:root > 
../initramfs.cpio

$ cd ..

$ gzip initramfs.cpio

$ mkimage -A arm -O linux -T ramdisk -d initramfs.cpio.gz uRamdisk

Note that we run cpio with the --owner root:root option. This is a quick fix for the file
ownership problem mentioned earlier, in the File ownership permissions in the staging
directory section. It makes everything in the cpio archive have a UID and GID of 0.
The final size of the uRamdisk file is about 2.9 MB with no kernel modules. Add to that 4.4
MB for the kernel zImage file and 440 KB for U-Boot, and this gives a total of 7.7 MB of
storage needed to boot this board. We are a little way off the 1.44 MB floppy that started it
all off. If size was a real problem, you could use one of these options:

Make the kernel smaller by leaving out drivers and functions you don't need.



Make BusyBox smaller by leaving out utilities you don't need.
Use musl libc or uClibc-ng in place of glibc.
Compile BusyBox statically.

Now that we have assembled an initramfs, let's boot the archive.

Booting the initramfs
The simplest thing we can do is to run a shell on the console so that we can interact with the
target. We can do that by adding rdinit=/bin/sh to the kernel command line. The next two
sections show how to do that for both QEMU and the BeagleBone Black.

Booting with QEMU
QEMU has the option called -initrd to load initramfs into memory. You should already
have, from Chapter 4, Configuring and Building the Kernel, a zImage compiled with the
arm-unknown-linux-gnueabi toolchain and the device tree binary for the Versatile PB.
From this chapter, you should have created an initramfs, which includes BusyBox
compiled with the same toolchain. Now, you can launch QEMU using the script in
MELP/Chapter05/run-qemu-initramfs.sh or using this command:

$ QEMU_AUDIO_DRV=none \

qemu-system-arm -m 256M -nographic -M versatilepb \    
-kernel zImage

-append "console=ttyAMA0 rdinit=/bin/sh" \ 
-dtb versatile-pb.dtb

-initrd initramfs.cpio.gz

You should get a root shell with the prompt / #.

Booting the BeagleBone Black
For the BeagleBone Black, we need the microSD card prepared in Chapter 4, Configuring
and Building the Kernel, plus a root filesystem built using the arm-cortex_a8-linux-
gnueabihf toolchain. Copy the uRamdisk you created earlier in this section to the boot
partition on the microSD card, and then use it to boot the BeagleBone Black to the point
where you get a U-Boot prompt. Then, enter these commands:

fatload mmc 0:1 0x80200000 zImage

fatload mmc 0:1 0x80f00000 am335x-boneblack.dtb fatload mmc 0:1
0x81000000 uRamdisk

setenv bootargs console=ttyO0,115200 rdinit=/bin/sh

bootz 0x80200000 0x81000000 0x80f00000



If all goes well, you will get a root shell with the prompt / # on the serial console. After
this is done, we will need to mount proc on both platforms.
Mounting proc
You will find that on both platforms the ps command doesn't work. This is because the proc
filesystem has not been mounted yet. Try mounting it:

# mount -t proc proc /proc

Now, run ps again and you will see the process listing.
A refinement to this setup would be to write a shell script that mounts proc, and anything
else that needs to be done at bootup. Then, you could run this script instead 
of /bin/sh at boot. The following snippet gives an idea of how it would work:

#!/bin/sh

/bin/mount -t proc proc /proc

# Other boot-time commands go here

/bin/sh

The last line, /bin/sh, launches a new shell that gives you an interactive root shell prompt.
Using a shell as init in this way is very handy for quick hacks, for example, when you
want to rescue a system with a broken init program. However, in most cases, you would
use an init program, which we will cover later on in this chapter. But, before this, I want to
look at two other ways to load initramfs.

Building an initramfs into the kernel image
So far, we have created a compressed initramfs as a separate file and used the bootloader
to load it into memory. Some bootloaders do not have the ability to load an initramfs file
in this way. To cope with these situations, Linux can be configured to incorporate
initramfs into the kernel image. To do this, change the kernel configuration and set
CONFIG_INITRAMFS_SOURCE to the full path of the cpio archive you created earlier. If you
are using menuconfig, it is in General setup | Initramfs source file(s). Note that it has to
be the uncompressed cpio file ending in .cpio, not the gzipped version. Then, build the
kernel.
Booting is the same as before, except that there is no ramdisk file. For QEMU, the
command is like this:

$ QEMU_AUDIO_DRV=none \

qemu-system-arm -m 256M -nographic -M versatilepb \

-kernel zImage \

-append "console=ttyAMA0 rdinit=/bin/sh" \

-dtb versatile-pb.dtb

For the BeagleBone Black, enter these commands at the U-Boot prompt:
fatload mmc 0:1 0x80200000 zImage

fatload mmc 0:1 0x80f00000 am335x-boneblack.dtb

setenv bootargs console=ttyO0,115200 rdinit=/bin/sh



bootz 0x80200000 – 0x80f00000

Of course, you must remember to regenerate the cpio file each time you change the
contents of the root filesystem and then rebuild the kernel.

Building an initramfs using a device table
A device table is a text file that lists the files, directories, device nodes, and links that go
into an archive or filesystem image. The overwhelming advantage is that it allows you to
create entries in the archive file that are owned by the root user, or any other UID, without
having root privileges yourself. You can even create device nodes without needing root
privileges. All this is possible because the archive is just a data file. It is only when it is
expanded by Linux at boot time that real files and directories get created, using the
attributes you have specified.
The kernel has a feature that allows us to use a device table when creating an initramfs.
You write the device table file and then point CONFIG_INITRAMFS_SOURCE at it. Then, when
you build the kernel, it creates the cpio archive from the instructions in the device table. At
no point do you need root access.
Here is a device table for our simple rootfs, but missing most of the symbolic links to
BusyBox to make it manageable:

dir /bin 775 0 0

dir /sys 775 0 0

dir /tmp 775 0 0

dir /dev 775 0 0

nod /dev/null 666 0 0 c 1 3

nod /dev/console 600 0 0 c 5 1

dir /home 775 0 0

dir /proc 775 0 0

dir /lib 775 0 0

slink /lib/libm.so.6 libm-2.22.so 777 0 0

slink /lib/libc.so.6 libc-2.22.so 777 0 0

slink /lib/ld-linux-armhf.so.3 ld-2.22.so 777 0 0

file /lib/libm-2.22.so /home/chris/rootfs/lib/libm-2.22.so 755 0 0

file /lib/libc-2.22.so /home/chris/rootfs/lib/libc-2.22.so 755 0 0

file /lib/ld-2.22.so /home/chris/rootfs/lib/ld-2.22.so 755 0 0

The syntax is fairly obvious:
dir <name> <mode> <uid> <gid>

file <name> <location> <mode> <uid> <gid>

nod <name> <mode> <uid> <gid> <dev_type> <maj> <min>

slink <name> <target> <mode> <uid> <gid>



The dir, nod, and slink commands create a filesystem object in the initramfs cpio
archive with the name, mode, user ID, and group ID given. The file command copies the
file from the source location into the archive and sets the mode, the user ID, and the group
ID.
The task of creating an initramfs device table from scratch is made easier by a script in
the kernel source code in usr/gen_initramfs_list.sh, which creates a device table from a
given directory. For example, to create the initramfs device table for the rootfs directory,
and to change the ownership of all files owned by user ID 1000 and group ID 1000 to user
and group ID 0, you would use this command:

$ bash linux-stable/scripts/gen_initramfs_list.sh -u 1000 \ 
-g 1000

rootfs > initramfs-device-table

Using this script's -o option lets you create a compressed initramfs file whose format
depends on the file extension after -o.
Note that the script only works with a bash shell. If you have a system with a different
default shell, as is the case with most Ubuntu configurations, you will find that the script
fails. Hence, in the command given previously, I explicitly used bash to run the script.

The old initrd format
There is an older format for a Linux ramdisk, known as initrd. It was the only format
available before Linux 2.6 and is still needed if you are using the MMU-less variant of
Linux, uClinux. It is pretty obscure and I will not cover it here. There is more information
in the kernel source in Documentation/initrd.txt.
Once our initramfs boots, then the system needs to start running programs. The first
program that runs is the init program. Let's look at that next.

The init program
Running a shell, or even a shell script, at boot time is fine for simple cases, but really you
need something more flexible. Normally, Unix systems run a program called init that
starts up and monitors other programs. Over the years, there have been many init
programs, some of which I will describe in Chapter 13, Starting Up – The init Program.
For now, I will briefly introduce the init program from BusyBox.
The init program begins by reading the configuration file, /etc/inittab. Here is a simple
example that is adequate for our needs:

::sysinit:/etc/init.d/rcS

::askfirst:-/bin/ash

The first line runs a shell script, rcS, when init is started. The second line prints the
message Please press Enter to activate this console to the console and starts a shell when



you press Enter. The leading - before /bin/ash means that it will become a login shell,
which sources /etc/profile and $HOME/.profile before giving the shell prompt. One of
the advantages of launching the shell like this is that job control is enabled. The most
immediate effect is that you can use Ctrl + C to terminate the current program. Maybe you
didn't notice it before, but wait until you run the ping program and find you can't stop it!
BusyBox init provides a default inittab if none is present in the root filesystem. It is a
little more extensive than the preceding one.
The script called /etc/init.d/rcS is the place to put initialization commands that need to
be performed at boot, for example, mounting the proc and sysfs filesystems:

#!/bin/sh

mount -t proc proc /proc

mount -t sysfs sysfs /sys

Make sure that you make rcS executable like this:
$ cd ~/rootfs

$ chmod +x etc/init.d/rcS

You can try init out on QEMU by changing the -append parameter like this:
-append "console=ttyAMA0 rdinit=/sbin/init"

For the BeagleBone Black, you need to set the bootargs variable in U-Boot as shown here:
setenv bootargs console=ttyO0,115200 rdinit=/sbin/init

Now, let's take a closer look at the inittab read by init during startup.

Starting a daemon process
Typically, you would want to run certain background processes at startup. Let's take the log
daemon, syslogd, as an example. The purpose of syslogd is to accumulate log messages
from other programs, mostly other daemons. Naturally, BusyBox has an applet for that!
Starting the daemon is as simple as adding a line like this to etc/inittab:

::respawn:/sbin/syslogd -n

respawn means that if the program terminates, it will be automatically restarted; -n means
that it should run as a foreground process. The log is written to /var/log/messages.

IMPORTANT NOTE
You may also want to start klogd in the same way: klogd sends kernel log messages to
syslogd so that they can be logged to permanent storage.
Next, we will learn how to configure user accounts.

Configuring user accounts



As I have hinted already, it is not good practice to run all programs as root, since if 
one program is compromised by an outside attack, then the whole system is at risk. 
It is preferable to create unprivileged user accounts and use them where full root is 
not necessary.
Usernames are configured in /etc/passwd. There is one line per user, with seven fields of
information separated by colons, which are, in order, the following:

The login name
A hash code used to verify the password or, more usually, an x to indicate that the
password is stored in /etc/shadow
The user ID
The group ID
A comment field, often left blank
The user's home directory
The shell this user will use (optional)

Here is a simple example in which we have user root with UID 0 and user daemon 
with UID 1:

root:x:0:0:root:/root:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/false

Setting the shell for user daemon to /bin/false ensures that any attempt to log on with that
name will fail.
Various programs have to read /etc/passwd in order to look up usernames and UIDs, and
so the file has to be world-readable. This is a problem if the password hashes are stored in
there as well, because a malicious program would be able to take a copy and discover the
actual passwords using a variety of cracker programs. Therefore, to reduce the exposure of
this sensitive information, the passwords are stored in /etc/shadow and x is placed in the
password field to indicate that this is the case. The file called /etc/shadow only needs to be
accessed by root, so as long as the root user is not compromised, the passwords are safe.
The shadow password file consists of one entry per user, made up of nine fields. Here is an
example that mirrors the password file shown in the preceding paragraph:

root::10933:0:99999:7:::

daemon:*:10933:0:99999:7:::

The first two fields are the username and the password hash. The remaining seven fields are
related to password aging, which is not usually an issue on embedded devices. If you are
curious about the full details, refer to the manual page for shadow(5).
In the example, the password for root is empty, meaning that root can log on without
giving a password. Having an empty password for root is useful during development but
not for production. You can generate or change a password hash by running the passwd
command on the target, which will write a new hash to /etc/shadow. If you want all
subsequent root filesystems to have this same password, you could copy this file back to the
staging directory.



Group names are stored in a similar way in /etc/group. There is one line per group
consisting of four fields separated by colons. The fields are here:

The name of the group
The group password, usually an x character, indicating that there is no 
group password
The GID or group ID
An optional list of users who belong to this group, separated by commas

Here is an example:
root:x:0:

daemon:x:1:

Now that we have learned how to configure a user account, let's see how to add it to the
root filesystem.

Adding user accounts to the root filesystem
Firstly, you have to add to your staging directory the files etc/passwd, etc/shadow, and
etc/group, as shown in the preceding section. Make sure that the permissions of
etc/shadow are 0600. Next, you need to initiate the login procedure by starting a program
called getty. There is a version of getty in BusyBox. You launch it from inittab using
the respawn keyword, which restarts getty when a login shell is terminated. Your inittab
should read like this:

::sysinit:/etc/init.d/rcS

::respawn:/sbin/getty 115200 console

Then, rebuild the ramdisk and try it out using QEMU or the BeagleBone Black as before.
Earlier in this chapter, we learned how to create device nodes using the mknod command.
Now, let's take a look at some easier ways to create device nodes.

A better way of managing device nodes
Creating device nodes statically with mknod is quite hard work and inflexible. There are
other ways to create device nodes automatically on demand:

devtmpfs: This is a pseudo filesystem that you mount over /dev at boot time. 
The kernel populates it with device nodes for all the devices that the kernel currently
knows about, and it creates nodes for new devices as they are detected at runtime. The
nodes are owned by root and have default permissions of 0600. Some well-known
device nodes, such as /dev/null and /dev/random, override the default to 0666. To
see exactly how this is done, take a look at the Linux source file drivers/char/mem.c
and see how struct memdev is initialized.



mdev: This is a BusyBox applet that is used to populate a directory with device nodes
and to create new nodes as needed. There is a configuration file, /etc/mdev.conf,
which contains rules for ownership and the mode of the nodes.
udev: This is the mainstream equivalent of mdev. You will find it on desktop Linux and
in some embedded devices. It is very flexible and a good choice for higher-end
embedded devices. It is now part of systemd.

IMPORTANT NOTE
Although both mdev and udev create the device nodes themselves, it is easier
to just let devtmpfs do the job and use mdev/udev as a layer on top to
implement the policy for setting ownership and permissions. The devtmpfs
approach is the only maintainable way to generate device nodes prior to
user space startup.

Let's look at some examples where we use these tools.

An example using devtmpfs
Support for the devtmpfs filesystem is controlled by the kernel configuration variable
CONFIG_DEVTMPFS. It is not enabled in the default configuration of the ARM Versatile PB,
so if you want to try out the following using this target, you will have to go back to your
kernel configuration and enable this option. Trying out devtmpfs is as simple as entering
this command:

# mount -t devtmpfs devtmpfs /dev

You will notice that afterward, there are many more device nodes in /dev. For a permanent
fix, add this to /etc/init.d/rcS:

#!/bin/sh

mount -t proc proc /proc

mount -t sysfs sysfs /sys

mount -t devtmpfs devtmpfs /dev

If you enable CONFIG_DEVTMPFS_MOUNT in your kernel configuration, the kernel will
automatically mount devtmpfs just after mounting the root filesystem. However, this option
has no effect when booting initramfs, as we are doing here.

An example using mdev
While mdev is a bit more complex to set up, it does allow you to modify the permissions of
device nodes as they are created. You begin by running mdev with the -s option, which
causes it to scan the /sys directory looking for information about current devices. From this
information, it populates the /dev directory with the corresponding nodes. If you want to
keep track of new devices coming online and create nodes for them as well, you need to



make mdev a hot plug client by writing to /proc/sys/kernel/hotplug. These additions to
/etc/init.d/rcS will achieve all of this:

#!/bin/sh

mount -t proc proc /proc

mount -t sysfs sysfs /sys

mount -t devtmpfs devtmpfs /dev

echo /sbin/mdev > /proc/sys/kernel/hotplug

mdev -s

The default mode is 660 and the ownership is root:root. You can change this by adding
rules in /etc/mdev.conf. For example, to give the null, random, and urandom devices their
correct modes, you would add this to /etc/mdev.conf:

null root:root 666

random root:root 444

urandom root:root 444

The format is documented in the BusyBox source code in docs/mdev.txt, and there are
more examples in the directory named examples.

Are static device nodes so bad after all?
Statically created device nodes do have one advantage over running a device manager: they
don't take any time during boot to create. If minimizing boot time is a priority, using
statically-created device nodes will save a measurable amount of time.
After devices are detected and their nodes are created, the next step in the startup sequence
is usually configuring the network.

Configuring the network
Next, let's look at some basic network configurations so that we can communicate with the
outside world. I am assuming that there is an Ethernet interface, eth0, and that we only
need a simple IPv4 configuration.
These examples use the network utilities that are part of BusyBox, and they are sufficient
for a simple use case, using the old-but-reliable ifup and ifdown programs. You can read
the manual pages for both to get the details. The main network configuration is stored in
/etc/network/interfaces. You will need to create these directories in the staging
directory:

etc/network

etc/network/if-pre-up.d

etc/network/if-up.d

var/run

For a static IP address, /etc/network/interfaces would look like this:



auto lo

iface lo inet loopback

auto eth0

iface eth0 inet static

    address 192.168.1.101

    netmask 255.255.255.0

    network 192.168.1.0

For a dynamic IP address allocated using DHCP, /etc/network/interfaces would look
like this:

auto lo

iface lo inet loopback

auto eth0

iface eth0 inet dhcp

You will also have to configure a DHCP client program. BusyBox has one named udchpcd.
It needs a shell script that should go in /usr/share/udhcpc/default.script. There is a
suitable default in the BusyBox source code in the examples/udhcp/simple.script
directory.

Network components for glibc
glibc uses a mechanism known as the name service switch (NSS) to control the way that
names are resolved to numbers for networking and users. Usernames, for example, may be
resolved to UIDs via the file /etc/passwd and network services such as HTTP can be
resolved to the service port number via /etc/services. All this is configured by
/etc/nsswitch.conf; see the manual page, nss(5), for full details. Here is a simple
example that will suffice for most embedded Linux implementations:

passwd:    files

group:     files

shadow:    files

hosts:     files dns

networks:  files

protocols: files

services:  files

Everything is resolved by the correspondingly named file in /etc, except for the hostnames,
which may additionally be resolved by a DNS lookup if they are not in /etc/hosts.
To make this work, you need to populate /etc with those files. Networks, protocols, and
services are the same across all Linux systems, so they can be copied from /etc in your
development PC. /etc/hosts should, at least, contain the loopback address:

127.0.0.1 localhost

The other files, passwd, group, and shadow, were described earlier, in the Configuring user
accounts section.



The last piece of the jigsaw is the libraries that perform the name resolution. They are
plugins that are loaded as needed based on the contents of nsswitch.conf, meaning that
they do not show up as dependencies if you use readelf or ldd. You will simply have to
copy them from the toolchain's sysroot:

$ cd ~/rootfs

$ cp -a $SYSROOT/lib/libnss* lib

$ cp -a $SYSROOT/lib/libresolv* lib

Our staging directory is now complete, so let's generate a filesystem from it.

Creating filesystem images with device tables
We saw earlier, in the Creating a boot initramfs section, that the kernel has an option to
create initramfs using a device table. Device tables are really useful because they allow a
non-root user to create device nodes and to allocate arbitrary UID and GID values to any
file or directory. The same concept has been applied to tools that create other filesystem
image formats, as shown in this mapping from filesystem format to tool:

jffs2: mkfs.jffs2
ubifs: mkfs:ubifs
ext2: genext2fs

We will look at jffs2 and ubifs in Chapter 9, Creating a Storage Strategy, when we look
at filesystems for flash memory. The third, ext2, is a format commonly used for managed
flash memory including SD cards. The example that follows uses ext2 to create a disk
image that can be copied to an SD card.
To begin with, you need to install the genext2fs tool on your host. On Ubuntu, the package
to install is named genext2fs:

$ sudo apt install genext2fs

genext2fs takes a device table file with the format <name> <type> <mode> <uid> <gid>
<major> <minor> <start> <inc> <count>, where the meanings of the fields are as
follows:

name:
type: One of the following:

f: A regular file
d: A directory
c: A character special device file
b: A block special device file
p: A FIFO (named pipe)

uid: The UID of the file
gid: The GID of the file



major and minor: The device numbers (device nodes only)
start, inc, and count: Allow you to create a group of device nodes starting from the
minor number in start (device nodes only)

You do not have to specify every file, as you do with the kernel initramfs table. You just
have to point at a directory—the staging directory—and list the changes and exceptions you
need to make in the final filesystem image.
A simple example that populates static device nodes for us is as follows:

/dev d 755 0 0 - - - - -

/dev/null c 666 0 0 1 3 0 0 -

/dev/console c 600 0 0 5 1 0 0 -

/dev/ttyO0 c 600 0 0 252 0 0 0 -

Then, you can use genext2fs to generate a filesystem image of 4 MB (that is 4,096 blocks
of the default size, 1,024 bytes):

$ genext2fs -b 4096 -d rootfs -D device-table.txt -U rootfs.ext2

Now, you can copy the resulting image, rootfs.ext2, to an SD card or similar, which we
will do next.

Booting the BeagleBone Black
The script called MELP/format-sdcard.sh creates two partitions on the microSD card: one
for the boot files and one for the root filesystem. Assuming that you have created the root
filesystem image as shown in the previous section, you can use the dd command to write it
to the second partition. As always, when copying files directly to storage devices like this,
make absolutely sure that you know which is the microSD card. In this case, I am using a
built-in card reader, which is the device called /dev/mmcblk0, so the command is as
follows:

$ sudo dd if=rootfs.ext2 of=/dev/mmcblk0p2

Note that the card reader on your host system may have a different name.
Then, slot the micro SD card into the BeagleBone Black, and set the kernel command line
to root=/dev/mmcblk0p2. The complete sequence of U-Boot commands is as follows:

fatload mmc 0:1 0x80200000 zImage

fatload mmc 0:1 0x80f00000 am335x-boneblack.dtb

setenv bootargs console=ttyO0,115200 root=/dev/mmcblk0p2

bootz 0x80200000 – 0x80f00000

This is an example of mounting a filesystem from a normal block device, such as an SD
card. The same principles apply to other filesystem types and we will look at them in more
detail in Chapter 9, Creating a Storage Strategy.



Mounting the root filesystem using NFS
If your device has a network interface, it is often useful to mount the root filesystem over
the network during development. It gives you access to the almost unlimited storage on
your host machine, so you can add in debug tools and executables with large symbol tables.
As an added bonus, updates made to the root filesystem on the development machine are
made available on the target immediately. You can also access all the target's log files from
the host.
To begin with, you need to install and configure an NFS server on your host. On Ubuntu,
the package to install is named nfs-kernel-server:

$ sudo apt install nfs-kernel-server

The NFS server needs to be told which directories are being exported to the network; this is
controlled by /etc/exports. There is one line for each export. The format is described in
the manual page exports(5). As an example, to export the root filesystem on my host, I
have this:

/home/chris/rootfs *(rw,sync,no_subtree_check,no_root_squash)

* exports the directory to any address on my local network. If you wish, you can give a
single IP address or a range at this point. There follows a list of options enclosed in
parentheses. There must not be any spaces between * and the opening parenthesis. The
options are here:

rw: This exports the directory as read-write.
sync: This option selects the synchronous version of the NFS protocol, which is more
robust but a little slower than the async option.
no_subtree_check: This option disables subtree checking, which has mild security
implications, but can improve reliability in some circumstances.
no_root_squash: This option allows requests from user ID 0 to be processed without
squashing to a different user ID. It is necessary to allow the target to correctly access
the files owned by root.

Having made changes to /etc/exports, restart the NFS server to pick them up.
Now, you need to set up the target to mount the root filesystem over NFS. For this to work,
your kernel has to be configured with CONFIG_ROOT_NFS. Then, you can configure Linux to
do the mount at boot time by adding the following to the kernel command line:

root=/dev/nfs rw nfsroot=<host-ip>:<root-dir> ip=<target-ip>

The options are as follows:
rw: This mounts the root filesystem read-write.
nfsroot: This specifies the IP address of the host, followed by the path to the exported
root filesystem.
ip: This is the IP address to be assigned to the target. Usually, network addresses are
assigned at runtime, as we have seen in the Configuring the network section. However,



in this case, the interface has to be configured before the root filesystem is mounted
and init has been started. Hence, it is configured on the kernel command line.

IMPORTANT NOTE
There is more information about NFS root mounts in the kernel source in
Documentation/filesystems/nfs/nfsroot.txt.

Next, let's boot an image complete with a root filesystem on QEMU and a 
BeagleBone Black.

Testing with QEMU
The following script creates a virtual network between the network device called tap0 on
the host and eth0 on the target using a pair of static IPv4 addresses and then launches
QEMU with the parameters to use tap0 as the emulated interface.
You will need to change the path to the root filesystem to be the full path to your staging
directory and maybe the IP addresses if they conflict with your network configuration:

#!/bin/bash

KERNEL=zImage

DTB=versatile-pb.dtb

ROOTDIR=/home/chris/rootfs

HOST_IP=192.168.1.1

TARGET_IP=192.168.1.101

NET_NUMBER=192.168.1.0

NET_MASK=255.255.255.0

sudo tunctl -u $(whoami) -t tap0

sudo ifconfig tap0 ${HOST_IP}

sudo route add -net ${NET_NUMBER} netmask ${NET_MASK} dev tap0

sudo sh -c "echo 1 > /proc/sys/net/ipv4/ip_forward"

QEMU_AUDIO_DRV=none \

qemu-system-arm -m 256M -nographic -M versatilepb -kernel ${KERNEL} -
append "console=ttyAMA0,115200 root=/dev/nfs rw
nfsroot=${HOST_IP}:${ROOTDIR} ip=${TARGET_IP}" -dtb ${DTB} -net nic -net
tap,ifname=tap0,script=no

The script is available in MELP/Chapter05/run-qemu-nfsroot.sh.
It should boot up as before, now using the staging directory directly via the NFS export.
Any files that you create in that directory will be immediately visible to the target device,
and any files created in the device will be visible to the development PC.

Testing with the BeagleBone Black



In a similar way, you can enter these commands at the U-Boot prompt of the 
BeagleBone Black:

setenv serverip 192.168.1.1

setenv ipaddr 192.168.1.101

setenv npath [path to staging directory]

setenv bootargs console=ttyO0,115200 root=/dev/nfs rw
nfsroot=${serverip}:${npath} ip=${ipaddr}

fatload mmc 0:1 0x80200000 zImage

fatload mmc 0:1 0x80f00000 am335x-boneblack.dtb

bootz 0x80200000 - 0x80f00000

There is a U-Boot environment file in MELP/Chapter05/uEnv.txt, which contains all these
commands. Just copy it to the boot partition of the microSD card and U-Boot will do the
rest.

Problems with file permissions
The files that you copied into the staging directory will be owned by the UID of the user
you are logged on as, typically 1000. However, the target has no knowledge of this user.
What is more, any files created by the target will be owned by users configured by the
target, often the root user. The whole thing is a mess. Unfortunately, there is no simple way
out. The best solution is to make a copy of the staging directory and change ownership to
UID and GID to 0, using the sudo chown -R 0:0 * command. Then, export this directory
as the NFS mount. It removes the convenience of having just one copy of the root
filesystem shared between development and target systems, but at least the file ownership
will be correct.
It's not uncommon in embedded Linux to link device drivers statically into the kernel rather
than load them dynamically from the root filesystem as modules at runtime. So how do we
reap the same benefits of rapid iteration provided by NFS when modifying the kernel
source code or DTBs? The answer is TFTP.

Using TFTP to load the kernel
Now that we know how to mount the root filesystem over a network using NFS, you may
be wondering if there is a way to load the kernel, device tree, and initramfs over the
network as well. If we can do this, the only component that needs to be written to storage
on the target is the bootloader. Everything else could be loaded from the host machine. It
would save time since you would not need to keep reflashing the target, and you could even
get work done while the flash storage drivers are still being developed (it happens).
The Trivial File Transfer Protocol (TFTP) is the answer to the problem. TFTP is a very
simple file transfer protocol, designed to be easy to implement in bootloaders such as U-
Boot.



To begin with, you need to install a TFTP daemon on your host. On Ubuntu, the package to
install is named tftpd-hpa:

$ sudo apt install tftpd-hpa

By default, tftpd-hpa grants read-only access to files in the /var/lib/tftpboot directory.
With tftpd-hpa installed and running, copy the files that you want to copy to the target into
/var/lib/tftpboot, which for the BeagleBone Black, would be zImage and am335x-
boneblack.dtb. Then enter these commands at the U-Boot command prompt:

setenv serverip 192.168.1.1

setenv ipaddr 192.168.1.101

tftpboot 0x80200000 zImage

tftpboot 0x80f00000 am335x-boneblack.dtb

setenv npath [path to staging]

setenv bootargs console=ttyO0,115200 root=/dev/nfs rw
nfsroot=${serverip}:${npath} ip=${ipaddr}

bootz 0x80200000 - 0x80f00000

You may find that the tftpboot command hangs, endlessly printing out the letter T, which
means that the TFTP requests are timing out. There are a number of reasons why this
happens, the most common ones being the following:

There is an incorrect IP address for serverip.
The TFTP daemon is not running on the server.
There is a firewall on the server that is blocking the TFTP protocol. Most firewalls do
indeed block the TFTP port, 69, by default.

Once you have resolved the problem, U-Boot can load the files from the host machine and
boot in the usual way. You can automate the process by putting the commands into a
uEnv.txt file.

Summary
One of the strengths of Linux is that it can support a wide range of root filesystems, and so
it can be tailored to suit a wide range of needs. We have seen that it is possible to construct
a simple root filesystem manually with a small number of components and that BusyBox is
especially useful in this regard. By going through the process one step at a time, it has given
us insight into some of the basic workings of Linux systems, including network
configuration and user accounts. However, the task rapidly becomes unmanageable as
devices get more complex. And, there is the ever-present worry that there may be a security
hole in the implementation that we have not noticed.
In the next chapter, I will show you how using an embedded build system can make 
the process of creating an embedded Linux system much easier and more reliable. I will
start by looking at Buildroot, and then go onto look at the more complex, but powerful,
Yocto Project.



Further reading
 

Filesystem Hierarchy Standard, Version 3.0 –
https://refspecs.linuxfoundation.org/fhs.shtml
ramfs, rootfs and initramfs, by Rob Landley, which is part of the Linux source in
Documentation/filesystems/ramfs-rootfs-initramfs.txt

https://refspecs.linuxfoundation.org/fhs.shtml


Chapter 6: Selecting a Build System
In the preceding chapters, we covered the four elements of embedded Linux and showed
you, step by step, how to build a toolchain, a bootloader, a kernel, and a root filesystem,
before combining them into a basic embedded Linux system. And there are a lot of steps!
Now, it is time to look at ways to simplify this process by automating it as much as
possible. We will look at how embedded build systems can help and look at two of them in
particular: Buildroot and the Yocto Project. Both are complex and flexible tools, and it
would require an entire book to describe how they work in full. In this chapter, I only want
to show you the general ideas behind build systems. I will show you how to build a simple
device image to get an overall feel of the system, and then how to make some useful
changes using the Nova board example from the previous chapters, as well as the Raspberry
Pi 4.
In this chapter, we will cover the following topics:

Comparing build systems
Distributing binaries
Introducing Buildroot
Introducing the Yocto Project

Let's get started!

Technical requirements
To follow along with the examples in this chapter, make sure you have the following:

A Linux-based host system with a minimum of 60 GB of available disk space
Etcher for Linux
A microSD card reader and card
A USB to TTL 3.3V serial cable
A Raspberry Pi 4
A 5V 3A USB-C power supply
An Ethernet cable and port for network connectivity
A BeagleBone Black
A 5V 1A DC power supply

All the code for this chapter can be found in the Chapter06 folder of this book's GitHub
repository: https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-
Third-Edition.

https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


Comparing build systems
I described the process of creating a system manually in Chapter 5, Building a Root
Filesystem, as the Roll Your Own (RYO) process. It has the advantage that you are in
complete control of the software, and you can tailor it to do anything you like. If you want
it to do something truly odd but innovative, or if you want to reduce the memory footprint
to the smallest size possible, RYO is the way to go. But, in the vast majority of situations,
building manually is a waste of time and produces inferior, unmaintainable systems.
The idea of a build system is to automate all the steps I have described up to this point. 
A build system should be able to build, from upstream source code, some or all of 
the following:

A toolchain
A bootloader
A kernel
A root filesystem

Building from upstream source code is important for a number of reasons. It means that you
have the peace of mind that you can rebuild at any time, without external dependencies. It
also means that you have the source code for debugging, and also that you can meet your
license requirements to distribute the code to users where necessary.
Therefore, to do its job, a build system has to be able to do the following:

1. Download the source code from upstream, either directly from the source code control
system or as an archive, and cache it locally.

2. Apply patches to enable cross compilation, fix architecture-dependent bugs, apply
local configuration policies, and so on.

3. Build the various components.
4. Create a staging area and assemble a root filesystem.
5. Create image files in various formats, ready to be loaded onto the target.

Other things that are useful are as follows:
1. Add your own packages containing, for example, applications or kernel changes.
2. Select various root filesystem profiles: large or small, with and without graphics or

other features.
3. Create a standalone SDK that you can distribute to other developers so that they don't

have to install the complete build system.
4. Track which open source licenses are used by the various packages you 

have selected.
5. Have a user-friendly user interface.



In all cases, they encapsulate the components of a system into packages, some for the host
and some for the target. Each package is defined by a set of rules to get the source, build it,
and install the results in the correct location. There are dependencies between the packages
and a build mechanism to resolve the dependencies and build the set of packages required.
Open source build systems have matured considerably over the last few years. There are
many around, including the following:

Buildroot: This is an easy-to-use system using GNU Make and Kconfig 
(https://buildroot.org).
EmbToolkit: This is a simple system for generating root filesystems and 
toolchains, and is the only one so far that supports LLVM/Clang out of the box
(https://www.embtoolkit.org).
OpenEmbedded: This is a powerful system, which is also a core component of the
Yocto Project and others (https://openembedded.org).
OpenWrt: This is a build tool oriented toward building firmware for wireless routers
(https://openwrt.org) that supports runtime package management out of the box.
PTXdist: This is an open source build system sponsored by Pengutronix
(https://www.ptxdist.org).
The Yocto Project: This extends the OpenEmbedded core with metadata, tools, and
documentation, and is probably the most popular system
(https://www.yoctoproject.org).

I will concentrate on two of these: Buildroot and the Yocto Project. They approach the
problem in different ways and have different objectives.
Buildroot has the primary aim of building root filesystem images, hence the name, although
it can build bootloader and kernel images, as well as toolchains. It is easy to install and
configure and generates target images quickly.
The Yocto Project, on the other hand, is more general in the way it defines the target
system, and so it can build complex embedded devices. Every component is generated as a
binary package, by default, using the RPM format, and then the packages are combined to
make the filesystem image. Furthermore, you can install a package manager in the
filesystem image, which allows you to update packages at runtime. In other words, when
you build with the Yocto Project, you are, in effect, creating your own custom Linux
distribution. Bear in mind that enabling runtime package management also means
provisioning and running your own corresponding package repository.

Distributing binaries
Mainstream Linux distributions are, in most cases, constructed from collections of binary
(precompiled) packages in either RPM or DEB format. RPM stands for the Red Hat
package manager and is used in Red Hat, SUSE, Fedora, and other distributions based 
on them. Debian and Debian-derived distributions, including Ubuntu and Mint, use 

https://buildroot.org/
https://www.embtoolkit.org/
https://openembedded.org/
https://openwrt.org/
https://www.ptxdist.org/
https://www.yoctoproject.org/


the Debian package manager format known as DEB. In addition, there is a lightweight
format specific to embedded devices known as the Itsy package format or IPK, which is
based on DEB.
The ability to include a package manager on the device is one of the big differentiators
between build systems. Once you have a package manager on the target device, you have an
easy path to deploy new packages to it and to update the existing ones. I will talk about the
implications of this in Chapter 10, Updating Software in the Field.

Introducing Buildroot
The current versions of Buildroot are capable of building a toolchain, a bootloader, a kernel,
and a root filesystem. It uses GNU Make as the principal build tool. There is good online
documentation at https://buildroot.org/docs.html, including The Buildroot user manual at
https://buildroot.org/downloads/manual/manual.html.

Background
Buildroot was one of the first build systems. It began as part of the uClinux and uClibc
projects as a way of generating a small root filesystem for testing. It became a separate
project in late 2001 and continued to evolve through to 2006, after which it went into a
rather dormant phase. However, since 2009, when Peter Korsgaard took over stewardship,
it has been developing rapidly, adding support for glibc-based toolchains and a greatly
increased number of packages and target boards.
As a matter of interest, Buildroot is also the ancestor of another popular build system,
OpenWrt (http://wiki.openwrt.org), which forked from Buildroot around 2004. The primary
focus of OpenWrt is to produce software for wireless routers, and so the package mix is
oriented toward the networking infrastructure. It also has a runtime package manager using
the IPK format so that a device can be updated or upgraded without a complete reflash of
the image. However, Buildroot and OpenWrt have diverged to such an extent that they are
now almost completely different build systems. Packages built with one are not compatible
with the other.

Stable releases and long-term support
The Buildroot developers produce stable releases four times a year, in February, May,
August, and November. They are marked by Git tags of the form <year>.02, <year>.05,
<year>.08, and <year>.11. From time to time, a release is marked for long-term support
(LTS), which means that there will be point releases to fix security and other important
bugs for 12 months after the initial release. The 2017.02 release was the first to receive the
LTS label.

https://buildroot.org/docs.html
https://buildroot.org/downloads/manual/manual.html
http://wiki.openwrt.org/


Installing
As usual, you can install Buildroot either by cloning the repository or downloading an
archive. Here is an example of obtaining version 2020.02.9, which was the latest stable
version at the time of writing:

$ git clone git://git.buildroot.net/buildroot -b 2020.02.9

$ cd buildroot

The equivalent TAR archive is available at https://buildroot.org/downloads.
Next, you should read the System requirements section of The Buildroot user manual,
available at https://buildroot.org/downloads/manual/manual.html, and make sure that you
have installed all the packages listed there.

Configuring
Buildroot uses the kernel Kconfig/Kbuild mechanism, which I described in the
Understanding kernel configuration section of Chapter 4, Configuring and Building the
Kernel. You can configure Buildroot from scratch directly using make menuconfig

(xconfig or gconfig), or you can choose one of the 100+ configurations for various
development boards and the QEMU emulator, which you can find stored in the configs/
directory. Typing make list-defconfigs lists all the default configurations.
Let's begin by building a default configuration that you can run on the Arm 
QEMU emulator:

$ cd buildroot

$ make qemu_arm_versatile_defconfig

$ make

IMPORTANT NOTE
You do not tell make how many parallel jobs to run with a -j option: Buildroot will make
optimum use of your CPUs all by itself. If you want to limit the number of jobs, you can run
make menuconfig and look under the Build options.
The build will take half an hour to an hour or more, depending on the capabilities of your
host system and the speed of your link to the internet. It will download approximately 220
MiB of code and will consume about 3.5 GiB of disk space. When it is complete, you will
find that two new directories have been created:

dl/: This contains archives of the upstream projects that Buildroot has built.
output/: This contains all the intermediate and final compiled resources.

You will see the following in output/:
build/: Here, you will find the build directory for each component.

https://buildroot.org/downloads
https://buildroot.org/downloads/manual/manual.html


host/: This contains various tools required by Buildroot that run on the host, including
the executables of the toolchain (in output/host/usr/bin).
images/: This is the most important of all since it contains the results of the build.
Depending on what you selected when configuring, you will find a bootloader, a
kernel, and one or more root filesystem images.
staging/: This is a symbolic link to sysroot of the toolchain. The name of the link is
a little confusing because it does not point to a staging area, as I defined it in Chapter
5, Building a Root Filesystem.
target/: This is the staging area for the root directory. Note that you cannot use it as
a root filesystem as it stands because the file ownership and the permissions are not set
correctly. Buildroot uses a device table, as described in the previous chapter, to set
ownership and permissions when the filesystem image is created in the image/
directory.

Running
Some of the sample configurations have a corresponding entry in the board/ directory,
which contains custom configuration files and information about installing the results on
the target. In the case of the system you have just built, the relevant file is
board/qemu/arm-versatile/readme.txt, which tells you how to start QEMU with this
target. Assuming that you have already installed qemu-system-arm, as described in Chapter
1, Starting Out, you can run it using this command:

$ qemu-system-arm -M versatilepb -m 256 \

-kernel output/images/zImage \

-dtb output/images/versatile-pb.dtb \

-drive file=output/images/rootfs.ext2,if=scsi,format=raw \

-append "root=/dev/sda console=ttyAMA0,115200" \

-serial stdio -net nic,model=rtl8139 -net user

There is a script named MELP/Chapter06/run-qemu-buildroot.sh in this book's code
archive that includes that command. When QEMU boots up, you should see the kernel boot
messages appear in the same Terminal window where you started QEMU, followed by a
login prompt:

Booting Linux on physical CPU 0x0

Linux version 4.19.91 (frank@franktop) (gcc version 8.4.0 (Buildroot
2020.02.9)) #1 Sat Feb 13 11:54:41 PST 2021

CPU: ARM926EJ-S [41069265] revision 5 (ARMv5TEJ), cr=00093177

CPU: VIVT data cache, VIVT instruction cache

OF: fdt: Machine model: ARM Versatile PB

[…]

VFS: Mounted root (ext2 filesystem) readonly on device 8:0.

devtmpfs: mounted

Freeing unused kernel memory: 140K



This architecture does not have kernel memory protection.

Run /sbin/init as init process

EXT4-fs (sda): warning: mounting unchecked fs, running e2fsck is
recommended

EXT4-fs (sda): re-mounted. Opts: (null)

Starting syslogd: OK

Starting klogd: OK

Running sysctl: OK

Initializing random number generator: OK

Saving random seed: random: dd: uninitialized urandom read (512 bytes
read)

OK

Starting network: 8139cp 0000:00:0c.0 eth0: link up, 100Mbps, full-
duplex, lpa 0x05E1

udhcpc: started, v1.31.1

random: mktemp: uninitialized urandom read (6 bytes read)

udhcpc: sending discover

udhcpc: sending select for 10.0.2.15

udhcpc: lease of 10.0.2.15 obtained, lease time 86400

deleting routers

random: mktemp: uninitialized urandom read (6 bytes read)

adding dns 10.0.2.3

OK

Welcome to Buildroot

buildroot login:

Log in as root, with no password.
You will see that QEMU launches a black window, in addition to the one with the kernel
boot messages. It is there to display the graphics frame buffer of the target. In this case, the
target never writes to the framebuffer, which is why it appears black. To close QEMU,
either press Ctrl + Alt + 2 to get to the QEMU console and then type quit, or just close the
framebuffer window.

Targeting real hardware
The steps for configuring and building a bootable image for the Raspberry Pi 4 are almost
the same as for Arm QEMU:

$ cd buildroot

$ make clean

$ make raspberrypi4_64_defconfig

$ make

When the build finishes, the image is written to a file named output/images/sdcard.img.
The post-image.sh script and the genimage-raspberrypi4-64.cfg configuration file used



to write the image file are both located in the board/raspberrypi/ directory. To write
sdcard.img onto a microSD card and boot it on your Raspberry Pi 4, follow these steps:

1. Insert a microSD card into your Linux host machine.
2. Launch Etcher.
3. Click Flash from file from Etcher.
4. Locate the sdcard.img image that you built for the Raspberry Pi 4 and open it.
5. Click Select target from Etcher.
6. Select the microSD card that you inserted in Step 1.
7. Click Flash from Etcher to write the image.
8. Eject the microSD card when Etcher is done flashing.
9. Insert the microSD card into your Raspberry Pi 4.

10. Apply power to the Raspberry Pi 4 by way of the USB-C port.

Confirm that your Pi 4 booted successfully by plugging it into your Ethernet and observing
that the network activity lights blink. In order to ssh into your Pi 4, you will need to add an
SSH server such as dropbear or openssh to your Buildroot image configuration.

Creating a custom BSP
Next, let's use Buildroot to create a Board Support Package (BSP) for our Nova board
using the same versions of U-Boot and Linux from earlier chapters. You can see the
changes I made to Buildroot during this section in MELP/Chapter06/buildroot.
The recommended places to store your changes are as follows:

board/<organization>/<device>: This contains any patches, binary blobs, extra
build steps, configuration files for Linux, U-Boot, and other components.
configs/<device>_defconfig: This contains the default configuration for the board.
package/<organization>/<package_name>: This is the place where you can put any
additional packages for this board.

Let's begin by creating a directory to store changes for the Nova board:
$ mkdir -p board/melp/nova

Next, clean the artifacts from any previous build, which you should always do when
changing configurations:

$ make clean

Now, select the configuration for the BeagleBone, which we are going to use as the basis of
the Nova configuration:

$ make beaglebone_defconfig



The make beaglebone_defconfig command configures Buildroot to build an image
targeting the BeagleBone Black. This configuration is a good starting point, but we still
need to customize it for our Nova board. Let's start by selecting the custom U-Boot patch
we created for Nova.
U-Boot
In Chapter 3, All about Bootloaders, we created a custom bootloader for Nova based on the
2021.01 version of U-Boot and created a patch file for it, which you will find in
MELP/Chapter03/0001-BSP-for-Nova.patch. We can configure Buildroot to select the
same version and apply our patch. Begin by copying the patch file into board/melp/nova,
and then use make menuconfig to set the U-Boot version to 2021.01, the patch file to
board/melp/nova/0001-BSP-for-Nova.patch, and the board name to Nova, as shown in
the following screenshot:



Figure 6.1 – Selecting custom U-Boot patches

We also need a U-Boot script to load the Nova device tree and the kernel from the 
SD card. We can put the file into board/melp/nova/uEnv.txt. It should contain these
commands:

bootpart=0:1

bootdir=

bootargs=console=ttyO0,115200n8 root=/dev/mmcblk0p2 rw rootfstype=ext4
rootwait



uenvcmd=fatload mmc 0:1 88000000 nova.dtb;fatload mmc 0:1 82000000
zImage;bootz 82000000 - 88000000

Note that despite the visible line wrapping, bootargs and uenvcmd are each defined on
single lines. rootfstype=ext4 rootwait is part of bootargs, while bootz 82000000 -
88000000 is part of uenvcmd.
Now that we've patched and configured U-Boot for our Nova board, the next step is
patching and configuring the kernel.
Linux
In Chapter 4, Configuring and Building the Kernel, we based the kernel on Linux 5.4.50
and supplied a new device tree, which is in MELP/Chapter04/nova.dts. Copy the device
tree to board/melp/nova, change the Buildroot kernel configuration to Linux version 5.4,
and change the device tree source to board/melp/nova/nova.dts, as shown in the
following screenshot:



Figure 6.2 – Selecting the device tree source

We will also have to change the kernel series to be used for kernel headers so that they
match the kernel being built:



Figure 6.3 – Selecting custom kernel headers

Now that we've done this, let's build the system image, complete with the kernel and 
root filesystem.
Build
In the last stage of the build, Buildroot uses a tool named genimage to create an image for
the SD card that we can copy directory to the card. We need a configuration file to lay out
the image in the right way. We will name the file board/melp/nova/genimage.cfg and
populate it, as shown here:

image boot.vfat {

    vfat {

        files = {

            "MLO",

            "u-boot.img",

            "zImage",



            "uEnv.txt",

            "nova.dtb",

        }

    }

    size = 16M

}

image sdcard.img {

    hdimage {

    }

    partition u-boot {

        partition-type = 0xC

        bootable = "true"

        image = "boot.vfat"

    }

    partition rootfs {

        partition-type = 0x83

        image = "rootfs.ext4"

        size = 512M

    }

}

This will create a file named sdcard.img, which contains two partitions named 
u-boot and rootfs. The first contains the boot files listed in boot.vfat, while the second
contains the root filesystem image named rootfs.ext4, which will be generated by
Buildroot.
Finally, we need to create a post-image.sh script that will call genimage, and thus create
the SD card image. We will put it in board/melp/nova/post-image.sh:

#!/bin/sh

BOARD_DIR="$(dirname $0)"

cp ${BOARD_DIR}/uEnv.txt $BINARIES_DIR/uEnv.txt

GENIMAGE_CFG="${BOARD_DIR}/genimage.cfg" 
GENIMAGE_TMP="${BUILD_DIR}/genimage.tmp"

rm -rf "${GENIMAGE_TMP}"

genimage \

    --rootpath "${TARGET_DIR}" \

    --tmppath "${GENIMAGE_TMP}" \

    --inputpath "${BINARIES_DIR}" \

    --outputpath "${BINARIES_DIR}" \

    --config "${GENIMAGE_CFG}"

This copies the uEnv.txt script into the output/images directory and runs genimage with
our configuration file.
Note that post-image.sh needs to be executable; otherwise, the build will fail at the end:

$ chmod +x board/melp/nova/post-image.sh



Now, we can run make menuconfig again and drill down into the page. From that page,
navigate down to Custom scripts to run before creating filesystem images and enter the
path to our post-image.sh script, as shown in this screenshot:

Figure 6.4 – Selecting custom scripts to run after creating filesystem images

Finally, you can build Linux for the Nova board just by typing make. When it has finished,
you will see these files (and some additional DTBs) in the output/images/ directory:

nova.dtb      sdcard.img      rootfs.ext2        u-boot.img

boot.vfat     rootfs.ext4     uEnv.txt           MLO

rootfs.tar    bzImage

To test it, insert a microSD card into your card reader and use Etcher to write 
output/images/sdcard.img out to an SD card, as we did for the Raspberry Pi 4. There is
no need to format the microSD beforehand, as we did in the previous chapter, because
genimage has created the exact disk layout required.



When Etcher finishes, insert the microSD card into the BeagleBone Black and power 
it on while pressing the Switch Boot button to force it to load from the SD card. You should
see that it boots up with our selected versions of U-Boot, Linux, and with the 
Nova device tree.
Having shown that our custom configuration for the Nova board works, it would be nice to
keep a copy of the configuration so that you and others can use it again, which you can do
with this command:

$ make savedefconfig BR2_DEFCONFIG=configs/nova_defconfig

Now, you have a Buildroot configuration for the Nova board. Subsequently, you can
retrieve this configuration by typing in the following command:

$ make nova_defconfig

We have successfully configured Buildroot. Now, what if you want to add your own code to
it? We'll learn how to do that in the next section.

Adding your own code
Suppose there is a program that you have developed and that you want to include it in the
build. You have two options: first, you can build it separately using its own build system,
and then roll the binary into the final build as an overlay. Second, you can create a
Buildroot package that can be selected from the menu and built like any other.
Overlays
An overlay is simply a directory structure that is copied over the top of the Buildroot root
filesystem at a later stage in the build process. It can contain executables, libraries, and
anything else you may want to include. Note that any compiled code must be compatible
with the libraries that are deployed at runtime, which, in turn, means that it must be
compiled with the same toolchain that Buildroot uses. Using the Buildroot toolchain is quite
easy. Just add it to PATH:

$ PATH=<path_to_buildroot>/output/host/usr/bin:$PATH

The prefix for the toolchain is <ARCH>-linux-. So, to compile a simple program, you would
do something like this:

$ PATH=/home/frank/buildroot/output/host/usr/bin:$PATH

$ arm-linux-gcc helloworld.c -o helloworld

Once you have compiled your program with the correct toolchain, you just need to install
the executables and other supporting files into a staging area, and then mark it as an overlay
for Buildroot. For the helloworld example, you might put it in the board/melp/nova
directory:

$ mkdir -p board/melp/nova/overlay/usr/bin

$ cp helloworld board/melp/nova/overlay/usr/bin

Finally, you set BR2_ROOTFS_OVERLAY to the path pointing at the overlay. It can be
configured in menuconfig with the System configuration | Root filesystem overlay
directories option.



Adding a package
Buildroot packages (over 2,000 of them) are stored in the package directory, each in its own
subdirectory. A package consists of at least two files: Config.in, containing the snippet of
Kconfig code required to make the package visible in the configuration menu, and a
Makefile named <package_name>.mk.

IMPORTANT NOTE
Note that a Buildroot package does not contain the code, just the instructions to get the
code by downloading a tarball, doing git pull or whatever is necessary to obtain the
upstream source.
The makefile is written in a format expected by Buildroot and contains directives that allow
Buildroot to download, configure, compile, and install the program. Writing a new package
makefile is a complex operation, and is covered in detail in The Buildroot user manual:
https://buildroot.org/downloads/manual/manual.html. Here is an example that shows you
how to create a package for a simple program stored locally, such as our helloworld
program.
Begin by creating the package/helloworld/ subdirectory with a configuration file,
Config.in, which looks like this:

config BR2_PACKAGE_HELLOWORLD

    bool "helloworld"

    help

      A friendly program that prints Hello World! Every 10s

The first line must be of the BR2_PACKAGE_<uppercase package name> format. This is
followed by a bool and the package name, as it will appear in the configuration menu,
which will allow a user to select this package. The help section is optional but usually a
good idea because it acts as self-documentation.
Next, link the new package to the Target Packages menu by editing package/Config.in
and sourcing the configuration file, as shown here:

menu "My programs"

      source "package/helloworld/Config.in"

endmenu

You could append this new helloworld package to an existing submenu, but it's cleaner to
create a new submenu, which only contains our package, and insert it before menu "Audio
and video applications".
After inserting menu "My programs" into package/Config.in, create a makefile,
package/helloworld/helloworld.mk, to supply the data needed by Buildroot:

HELLOWORLD_VERSION = 1.0.0

HELLOWORLD_SITE = /home/frank/MELP/Chapter06/helloworld

HELLOWORLD_SITE_METHOD = local

define HELLOWORLD_BUILD_CMDS

    $(MAKE) CC="$(TARGET_CC)" LD="$(TARGET_LD)" -C $(@D) all

endef

https://buildroot.org/downloads/manual/manual.html


define HELLOWORLD_INSTALL_TARGET_CMDS

    $(INSTALL) -D -m 0755 $(@D)/helloworld
$(TARGET_DIR)/usr/bin/helloworld

endef

$(eval $(generic-package))

You can find my helloworld package in this book's code archive in
MELP/Chapter06/buildroot/package/helloworld and the source code for the program in
MELP/Chapter06/helloworld. The location of the code is hardcoded to a local pathname.
In a more realistic case, you would get the code from a source code system or from a
central server of some kind: there are details on how to do this in The Buildroot user
manual, and plenty of examples in other packages.

License compliance
Buildroot is based on a piece of open source software, as are the packages it compiles. At
some point during the project, you should check the licenses, which you can do by running
the following:

$ make legal-info

The information is gathered into output/legal-info/. There are summaries of the licenses
used to compile the host tools in host-manifest.csv and, on the target, in manifest.csv.
There is more information in the README file and in The Buildroot 
user manual.
We will revisit Buildroot again in Chapter 14, Starting with BusyBox runit. Now, let's
switch build systems and start learning about the Yocto Project.

Introducing the Yocto Project
The Yocto Project is a more complex beast than Buildroot. Not only can it build toolchains,
bootloaders, kernels, and root filesystems as Buildroot can, but it can generate an entire
Linux distribution for you with binary packages that can be installed at runtime. The build
process is structured around groups of recipes, similar to Buildroot packages but written
using a combination of Python and shell script. The Yocto Project includes a task scheduler
called BitBake that produces whatever you have configured, from the recipes. There is
plenty of online documentation at https://www.yoctoproject.org.

Background
The structure of the Yocto Project makes more sense if you look at the background first. Its
roots are in OpenEmbedded (https://openembedded.org), which, in turn, grew out of a
number of projects to port Linux to various handheld computers, including the Sharp

https://www.yoctoproject.org/
https://openembedded.org/


Zaurus and the Compaq iPaq. OpenEmbedded came to life in 2003 as the build system for
those handheld computers. Soon after, other developers began to use it as a general build
system for devices running embedded Linux. It was developed, and continues to be
developed, by an enthusiastic community of programmers.
The OpenEmbedded project set out to create a set of binary packages using the compact
IPK format, which could then be combined in various ways to create a target system and be
installed on the target at runtime. It did this by creating recipes for each package and using
BitBake as the task scheduler. It was, and is, very flexible. By supplying the right metadata,
you can create an entire Linux distribution to your own specification. One that is fairly
well-known is the Ångström Distribution, but there are many others as well.
At some time in 2005, Richard Purdie, then a developer at OpenedHand, created a fork of
OpenEmbedded, which had a more conservative choice of packages, and created releases
that were stable over a period of time. He named it Poky after the Japanese snack (if you
are worried about these things, Poky is pronounced to rhyme with hockey). Although Poky
was a fork, OpenEmbedded and Poky continued to run alongside each other, sharing
updates and keeping the architectures more or less in step. Intel bought OpenedHand in
2008, and they transferred Poky Linux to the Linux Foundation in 2010 when they formed
the Yocto Project.
Since 2010, the common components of OpenEmbedded and Poky have been combined
into a separate project known as OpenEmbedded Core, or just OE-Core.
Therefore, the Yocto Project collects several components, the most important of which are
as follows:

OE-Core: This is the core metadata, and is shared with OpenEmbedded.
BitBake: This is the task scheduler, and is shared with OpenEmbedded and 
other projects.
Poky: This is the reference distribution.
Documentation: This is the user's manuals and developer's guides for 
each component.
Toaster: This is a web-based interface to BitBake and its metadata.

The Yocto Project provides a stable base, which can be used as-is or can be extended using
meta layers, which I will discuss later in this chapter. Many SoC vendors provide BSPs for
their devices in this way. Meta layers can also be used to create extended or just different
build systems. Some are open source, such as the Ångström Distribution, while others are
commercial, such as MontaVista Carrier Grade Edition, Mentor Embedded Linux, and
Wind River Linux. The Yocto Project has a branding and compatibility testing scheme to
ensure that there is interoperability between components. You will see statements such as
"Yocto Project compatible" on various web pages.
Consequently, you should think of the Yocto Project as the foundation of a whole sector of
embedded Linux, as well as being a complete build system in its own right.

NOTE



You may be wondering about the name, Yocto. yocto is the SI prefix for 10-24, 
in the same way that micro is 10-6. Why name the project Yocto? It was partly to indicate
that it could build very small Linux systems (although, to be fair, so can other build
systems), but also to steal a march on the Ångström Distribution, which is based on
OpenEmbedded. An Ångström is 10-10. That's huge, compared to a yocto!

Stable releases and supports
Usually, there is a release of the Yocto Project every 6 months: in April and October. They
are principally known by their code names, but it is useful to know the version numbers of
the Yocto Project and Poky as well. Here is a table of the six most recent releases at the
time of writing:

Code name Release date Yocto version Poky version

Gatesgarth October 2020 3.2 24



Dunfell April 2020 3.1 23

Zeus October 2019 3.0 22

Warrior April 2019 2.7 21

Thud November 2018 2.6 20

Sumo April 2018 2.5 19

The stable releases are supported with security and critical bug fixes for the current release
cycle and the next cycle. In other words, each version is supported for approximately 12
months after the release. In addition, Dunfell is the first LTS release of Yocto. The LTS
designation means that Dunfell will receive defect fixes and updates for an extended period
of 2 years. Consequently, the plan going forward is to choose an LTS release of the Yocto
Project every 2 years.
As with Buildroot, if you want continued support, you can update to the next stable release,
or you can backport changes to your version. You also have the option of commercial
support for periods of several years with the Yocto Project from operating system vendors,
such as Mentor Graphics, Wind River, and many others. Now, let's learn how to install the
Yocto Project.

Installing the Yocto Project
To get a copy of the Yocto Project, clone the repository, choosing the code name as the
branch, which is dunfell in this case:

$ git clone -b dunfell git://git.yoctoproject.org/poky.git



It is good practice to run git pull periodically to grab the latest bug fixes and security
patches from the remote branch.
Read the Compatible Linux Distribution and Build Host Packages sections of the Yocto
Project Quick Build guide (https://www.yoctoproject.org/docs/current/brief-
yoctoprojectqs/brief-yoctoprojectqs.html). Make sure that the essential packages for your
Linux distribution are installed on your host computer. The next step is configuring.

Configuring
As with Buildroot, let's begin with a build for the QEMU Arm emulator. Begin by sourcing
a script to set up the environment:

$ source poky/oe-init-build-env

This creates a working directory for you named build/ and makes it the current directory.
All of the configuration, as well as any intermediate and target image files, 
will be put in this directory. You must source this script each time you want to work on this
project.
You can choose a different working directory by adding it as a parameter to 
oe-init-build-env; for example:

$ source poky/oe-init-build-env build-qemuarm

This will put you into the build-qemuarm/ directory. This way, you can have several build
directories, each for a different project: you choose which one you want to work with
through the parameter that's passed to oe-init-build-env.
Initially, the build directory contains only one subdirectory named conf/, which contains
the following configuration files for this project:

local.conf: This contains a specification of the device you are going to build and the
build environment.
bblayers.conf: This contains the paths of the meta layers you are going to use. I will
describe layers later on.

For now, we just need to set the MACHINE variable in conf/local.conf to qemuarm by
removing the comment character (#) at the start of this line:

MACHINE ?= "qemuarm"

Now, we are ready to build our first image using Yocto.

Building
To actually perform the build, you need to run BitBake, telling it which root filesystem
image you want to create. Some common images are as follows:

https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html


core-image-minimal: This is a small console-based system that is useful for tests and
as the basis for custom images.
core-image-minimal-initramfs: This is similar to core-image-minimal but built as
a ramdisk.
core-image-x11: This is a basic image with support for graphics through an X11
server and the xterminal Terminal app.
core-image-full-cmdline: This console-based system offers a standard CLI
experience and full support for the target hardware.

By giving BitBake the final target, it will work backward and build all the dependencies
first, beginning with the toolchain. For now, we just want to create a minimal image to see
how it works:

$ bitbake core-image-minimal

The build is likely to take some time (probably more than an hour), even with several CPU
cores and prodigious amounts of RAM. It will download about 10 GiB of source code, and
it will consume about 40 GiB of disk space. When it is complete, you will find several new
directories in the build directory, including downloads/, which contains all the source
downloaded for the build, and tmp/, which contains most of the build artifacts. You should
see the following in tmp/:

work/: This contains the build directory and the staging area for the root filesystem.
deploy/: This contains the final binaries to be deployed on the target:

deploy/images/[machine name]/: Contains the bootloader, the kernel and
the root filesystem images ready to be run on the target.
deploy/rpm/: This contains the RPM packages that make up the images.
deploy/licenses/: This contains the license files that are extracted from
each package.

When the build is done, we can boot the finished image on QEMU.

Running the QEMU target
When you build a QEMU target, an internal version of QEMU is generated, which removes
the need to install the QEMU package for your distribution, and thus avoids version
dependencies. There is a wrapper script named runqemu we can use to run this version of
QEMU.
To run the QEMU emulation, make sure that you have sourced oe-init-build-env, and
then just type this:

$ runqemu qemuarm

In this case, QEMU has been configured with a graphic console so that the login prompt
appears in a black framebuffer, as shown in the following screenshot:



Figure 6.5 – QEMU graphic console

Log in as root, without a password. To close QEMU, close the framebuffer window.
To launch QEMU without the graphic window, add nographic to the command line:

$ runqemu qemuarm nographic

In this case, close QEMU using the key sequence Ctrl + A and then x.
The runqemu script has many other options. Type runqemu help for more information.

Layers
The metadata for the Yocto Project is structured into layers. By convention, each layer has a
name beginning with meta. The core layers of the Yocto Project are as follows:

meta: This is the OpenEmbedded core and contains some changes for Poky.
meta-poky: This is the metadata specific to the Poky distribution.
meta-yocto-bsp: This contains the board support packages for the machines that the
Yocto Project supports.

The list of layers in which BitBake searches for recipes is stored in <your build

directory>/conf/bblayers.conf and, by default, includes all three layers mentioned in
the preceding list.
By structuring the recipes and other configuration data in this way, it is very easy to extend
the Yocto Project by adding new layers. Additional layers are available from 
SoC manufacturers, the Yocto Project itself, and a wide range of people wishing to 
add value to the Yocto Project and OpenEmbedded. There is a useful list of layers at
http://layers.openembedded.org/layerindex/. Here are some examples:

meta-qt5: Qt 5 libraries and utilities
meta-intel: BSPs for Intel CPUs and SoCs
meta-raspberrypi: BSPs for the Raspberry Pi boards
meta-ti: BSPs for TI Arm-based SoCs

http://layers.openembedded.org/layerindex/


Adding a layer is as simple as copying the meta directory to a suitable location and adding
it to bblayers.conf. Make sure that you read the REAMDE file that should accompany each
layer to see what dependencies it has on other layers, as well as which versions of the Yocto
Project it is compatible with.
To illustrate the way layers work, let's create a layer for our Nova board, which we can use
for the remainder of this chapter as we add features. You can view the complete
implementation of the layer in the code archive in MELP/Chapter06/meta-nova.
Each meta layer has to have at least one configuration file, named conf/layer.conf, and it
should also have the README file and a license.
To create our meta-nova layer, perform the following steps:

$ source poky/oe-init-build-env build-nova

$ bitbake-layers create-layer nova

$ mv nova ../meta-nova

This will put you in a working directory named build-nova and create a layer named meta-
nova with a conf/layer.conf, an outline README, and an MIT LICENSE in COPYING.MIT.
The layer.conf file looks like this:

# We have a conf and classes directory, add to BBPATH

BBPATH .= ":${LAYERDIR}"

# We have recipes-* directories, add to BBFILES

BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \

            ${LAYERDIR}/recipes-*/*/*.bbappend"

BBFILE_COLLECTIONS += "nova"

BBFILE_PATTERN_nova = "^${LAYERDIR}/"

BBFILE_PRIORITY_nova = "6"

LAYERDEPENDS_nova = "core"

LAYERSERIES_COMPAT_nova = "dunfell"

It adds itself to BBPATH and the recipes it contains to BBFILES. From looking at the code,
you can see that the recipes are found in the directories with names beginning with
recipes- and have filenames ending in .bb (for normal BitBake recipes) or .bbappend (for
recipes that extend existing recipes by overriding or adding to the instructions). This layer
has the name nova, was added to the list of layers in BBFILE_COLLECTIONS, and has a
priority of 6. The layer's priority is used if the same recipe appears in several layers: the one
in the layer with the highest priority wins.
Now, you need to add this layer to your build configuration using the following command:

$ bitbake-layers add-layer ../meta-nova

Make sure to run this command from your build-nova working directory after sourcing
that environment.
You can confirm that your layer structure is set up correctly like this:

$ bitbake-layers show-layers

NOTE: Starting bitbake server...

layer            path                               priority

==============================================================



meta             /home/frank/poky/meta                     5

meta-poky        /home/frank/poky/meta-poky                5

meta-yocto-bsp   /home/frank/poky/meta-yocto-bsp           5

meta-nova        /home/frank/meta-nova                     6

Here, you can see the new layer. It has a priority of 6, which means that we could override
recipes in the other layers, which all have a lower priority.
At this point, it would be a good idea to run a build using this empty layer. The final target
will be the Nova board but, for now, build for the BeagleBone Black by uncommenting
MACHINE ?= "beaglebone-yocto" in conf/local.conf. Then, build a small image using
bitbake core-image-minimal, as you did previously.
As well as recipes, layers may contain BitBake classes, configuration files for machines,
distributions, and more. I will look at recipes next and show you how to create a customized
image and how to create a package.
BitBake and recipes
BitBake processes metadata of several different types, including the following:

Recipes: Files ending in .bb. These contain information about building a unit of
software, including how to get a copy of the source code, the dependencies of other
components, and how to build and install it.
Append: Files ending in .bbappend. These allow some details of a recipe to be
overridden or extended. A bbappend file simply appends its instructions to the end of a
recipe (.bb) file of the same root name.
Include: Files ending in .inc. These contain information that is common to several
recipes, allowing information to be shared among them. The files may be included
using the include or require keywords. The difference is that require produces an
error if the file does not exist, whereas include does not.
Classes: Files ending in .bbclass. These contain common build information; for
example, how to build a kernel or how to build an autotools project. The classes are
inherited and extended in recipes and other classes using the inherit keyword. The
classes/base.bbclass class is implicitly inherited in every recipe.
Configuration: Files ending in .conf. They define various configuration variables
that govern the project's build process.

A recipe is a collection of tasks written in a combination of Python and shell script. The
tasks have names such as do_fetch, do_unpack, do_patch, do_configure, do_compile, and
do_install. You use BitBake to execute these tasks. The default task is do_build, which
performs all the subtasks required to build the recipe. You can list the tasks available in a
recipe using bitbake -c listtasks [recipe]. For example, you can list the tasks in
core-image-minimal like this:

$ bitbake -c listtasks core-image-minimal

IMPORTANT NOTE



The -c option tells BitBake to run a specific task from a recipe without having to include
the do_ part at the beginning of the task's name.
The do_listtasks task is simply a special task that lists all the tasks defined within a
recipe. Another example is the fetch task, which downloads the source code for a recipe:

$ bitbake -c fetch busybox

To get the code for a target and all its dependencies, which is useful when you want to make
sure you have downloaded all the code for the image you are about to build, use the
following command:

$ bitbake core-image-minimal --runall=fetch

The recipe files are usually named <package-name>_<version>.bb. They may have
dependencies on other recipes, which would allow BitBake to work out all the subtasks that
need to be executed to complete the top-level job.
As an example, to create a recipe for our helloworld program in meta-nova, you would
create a directory structure like this:

meta-nova/recipes-local/helloworld

├── files

│   └── helloworld.c

└── helloworld_1.0.bb

The recipe is helloworld_1.0.bb and the source is local to the recipe directory in the
files/ subdirectory. The recipe contains these instructions:

DESCRIPTION = "A friendly program that prints Hello World!"

PRIORITY = "optional"

SECTION = "examples"

LICENSE = "GPLv2"

LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/GPL-
2.0;md5=801f80980d171dd6425610833a22dbe6"

SRC_URI = "file://helloworld.c"

S = "${WORKDIR}"

do_compile() {

    ${CC} ${CFLAGS} ${LDFLAGS} helloworld.c -o helloworld

}

do_install() {

    install -d ${D}${bindir}

    install -m 0755 helloworld ${D}${bindir}

}

The location of the source code is set by SRC_URI. In this case, the file:// URI means that
the code is local to the recipe directory. BitBake will search the files/, helloworld/, and
helloworld-1.0/ directories, relative to the directory that contains the recipe. The tasks
that need to be defined are do_compile and do_install, 
which compile the source file and install it into the target root filesystem: ${D} expands 
to the staging area of the recipe and ${bindir} to the default binary directory; that is, 
/usr/bin.



Every recipe has a license, defined by LICENSE, which is set to GPLv2 here. The file
containing the text of the license and a checksum is defined by LIC_FILES_CHKSUM. BitBake
will terminate the build if the checksum does not match, indicating that the license has
changed in some way. Note that the MD5 checksum value and COMMON_LICENSE_DIR are on
the same line, separated by a semicolon. The license file may be part of the package or it
may point to one of the standard license texts in meta/files/common-licenses/, as is the
case here.
By default, commercial licenses are disallowed, but it is easy to enable them. You need to
specify the license in the recipe, as shown here:

LICENSE_FLAGS = "commercial"

Then, in your conf/local.conf file, you would explicitly allow this license, like so:
LICENSE_FLAGS_WHITELIST = "commercial"

Now, to make sure that our helloworld recipe compiles correctly, you can ask BitBake to
build it, like so:

$ bitbake helloworld

If all goes well, you should see that it has created a working directory for it in
tmp/work/cortexa8hf-neon-poky-linux-gnueabi/helloworld/. You should also see that
there is an RPM package for it in tmp/deploy/rpm/cortexa8hf_neon/helloworld-1.0-
r0.cortexa8hf_neon.rpm.
It is not part of the target image yet, though. The list of packages to be installed is held in a
variable named IMAGE_INSTALL. You can append it to the end of that list by adding this line
to conf/local.conf:

IMAGE_INSTALL_append = " helloworld"

Note that there has to be a space between the opening double quote and the first package
name. Now, the package will be added to any image that you bitbake:

$ bitbake core-image-minimal

If you look in tmp/deploy/images/beaglebone-yocto/core-image-minimal-

beaglebone-yocto.tar.bz2, you will see that /usr/bin/helloworld has indeed been
installed.

Customizing images via local.conf
You may often want to add a package to an image during development or tweak it in other
ways. As shown previously, you can simply append to the list of packages to be installed by
adding a statement like this:

IMAGE_INSTALL_append = " strace helloworld"

You can make more sweeping changes via EXTRA_IMAGE_FEATURES. Here is a short list that
should give you an idea of the features you can enable:

dbg-pkgs: This installs debug symbol packages for all the packages installed in 
the image.



debug-tweaks: This allows root logins without passwords and other changes that
make development easier.
package-management: This installs package management tools and preserves the
package manager database.
read-only-rootfs: This makes the root filesystem read-only. We will cover this in
more detail in Chapter 9, Creating a Storage Strategy.
x11: This installs the X server.
x11-base: This installs the X server with a minimal environment.
x11-sato: This installs the OpenedHand Sato environment.

There are many more features that you can add in this way. I recommend that you look at
the Image Features section of the Yocto Project Reference Manual at
https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html, and also read through
the code in meta/classes/core-image.bbclass.

Writing an image recipe
The problem with making changes to local.conf is that they are, well, local. If you want to
create an image that is to be shared with other developers or to be loaded onto a production
system, then you should put the changes into an image recipe.
An image recipe contains instructions about how to create the image files for a target,
including the bootloader, the kernel, and the root filesystem images. By convention, image
recipes are put into a directory named images, so you can get a list of all the images that are
available by using this command:

$ ls meta*/recipes*/images/*.bb

You will find that the recipe for core-image-minimal is in meta/recipes-

core/images/core-image-minimal.bb.
A simple approach is to take an existing image recipe and modify it using statements
similar to those you used in local.conf.
For example, imagine that you want an image that is the same as core-image-minimal but
includes your helloworld program and the strace utility. You can do that with a two-line
recipe file, which includes (using the require keyword) the base image and adds the
packages you want. It is conventional to put the image in a directory named images, so add
the nova-image.bb recipe with the following content to meta-nova/recipes-

local/images:
require recipes-core/images/core-image-minimal.bb

IMAGE_INSTALL += "helloworld strace"

Now, you can remove the IMAGE_INSTALL_append line from your local.conf and build it
using this:

$ bitbake nova-image

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html


This time, the build should proceed much more quickly because BitBake reuses the
products left over from building core-image-minimal.
Not only does BitBake build images for running on a target device, but it can also build an
SDK for developing on a host machine.

Creating an SDK
It is very useful to be able to create a standalone toolchain that other developers can install,
avoiding the need for everyone in the team to have a full installation of the Yocto Project.
Ideally, you want the toolchain to include development libraries and header files for all the
libraries installed on the target. You can do that for any image using the populate_sdk task,
as shown here:

$ bitbake -c populate_sdk nova-image

The result is a self-installing shell script in tmp/deploy/sdk:
poky-<c_library>-<host_machine>-<target_image><target_machine>-
toolchain-<version>.sh

For the SDK built with the nova-image recipe, it is this:
poky-glibc-x86_64-nova-image-cortexa8hf-neon-beaglebone-yocto-toolchain-
3.1.5.sh

If you only want a basic toolchain with just C and C++ cross compilers, the C library, and
header files, you can run this instead:

$ bitbake meta-toolchain

To install the SDK, just run the shell script. The default install directory is /opt/poky, but
the install script allows you to change this:

$ tmp/deploy/sdk/poky-glibc-x86_64-nova-image-cortexa8hf-neon-
beaglebone-yocto-toolchain-3.1.5.sh

Poky (Yocto Project Reference Distro) SDK installer version 3.1.5

==============================================================

Enter target directory for SDK (default: /opt/poky/3.1.5):

You are about to install the SDK to "/opt/poky/3.1.5". Proceed [Y/n]? Y

[sudo] password for frank:

Extracting SDK............................................done

Setting it up...done

SDK has been successfully set up and is ready to be used.

Each time you wish to use the SDK in a new shell session, you need to
source the environment setup script e.g.

$ . /opt/poky/3.1.5/environment-setup-cortexa8hf-neon-poky-linux-gnueabi

To make use of the toolchain, first, source the environment and set up the script:
$ source /opt/poky/3.1.5/environment-setup-cortexa8hf-neon-poky-linux-
gnueabi

TIP



The environment-setup-* script that sets things up for the SDK is not compatible with the
oe-init-build-env script that you source when working in the Yocto Project build
directory. It is a good rule to always start a new Terminal session before you source either
script.
The toolchain generated by the Yocto Project does not have a valid sysroot directory. We
know this to be true because passing the -print-sysroot option to the toolchain's compiler
returns /not/exist:

$ arm-poky-linux-gnueabi-gcc -print-sysroot

/not/exist

Consequently, if you try to cross compile, as I have shown in previous chapters, it will fail,
like this:

$ arm-poky-linux-gnueabi-gcc helloworld.c -o helloworld

helloworld.c:1:10: fatal error: stdio.h: No such file or directory

    1 | #include <stdio.h>

      |          ^~~~~~~~~

compilation terminated.

This is because the compiler has been configured to work for a wide range of Arm
processors, and the fine-tuning is done when you launch it using the right set of flags.
Instead, you should use the shell variables that are created when you source the
environment-setup script for cross compiling. It includes the following:

CC: C compiler
CXX: C++ compiler
CPP: C preprocessor
AS: Assembler
LD: Linker

As an example, this is what we find that CC has been set to:
$ echo $CC

arm-poky-linux-gnueabi-gcc -mfpu=neon -mfloat-abi=hard -mcpu=cortex-a8 -
fstack-protector-strong -D_FORTIFY_SOURCE=2 -Wformat -Wformat-security -
Werror=format-security --sysroot=/opt/poky/3.1.5/sysroots/cortexa8hf-
neon-poky-linux-gnueabi

So long as you use $CC to compile, everything should work fine:
$ $CC -O helloworld.c -o helloworld

Next, we will look at the license audit.

The license audit
The Yocto Project insists that each package has a license. A copy of the license is placed in
tmp/deploy/licenses/[package name] for each package as it is built. In addition, a
summary of the packages and licenses used in an image are put into the <image name>-



<machine name>-<date stamp>/ directory. For nova-image, which we just built, the
directory would be named something like this:

tmp/deploy/licenses/nova-image-beaglebone-yocto-20210214072839/

This completes our survey of the two leading build systems for embedded Linux. Buildroot
is simple and quick, making it a good choice for fairly simple single-purpose devices:
traditional embedded Linux, as I like to think of them. The Yocto Project is more complex
and flexible. Even though there is good support throughout the community and industry for
the Yocto Project, the tool still has a very steep learning curve. You can expect it to take
several months for you to become proficient with Yocto, and even then, it will sometimes
do things that you don't expect.

Summary
In this chapter, you learned how to use both Buildroot and the Yocto Project to configure,
customize, and build embedded Linux images. We used Buildroot to create a BSP with a
custom U-Boot patch and device tree specification for a hypothetical board based on the
BeagleBone Black. We then learned how to add our own code to an image in the form of a
Buildroot package. You were also introduced to the Yocto Project, which we will cover in
depth in the next two chapters. In particular, you learned some basic BitBake terminology,
how to write an image recipe, and how to create an SDK.
Don't forget that any devices you create using these tools will need to be maintained in the
field for a period of time, often over many years. Both the Yocto Project and Buildroot
provide point releases for about 1 year after the initial release, and the Yocto Project now
offers long term support for at least 2 years. In either case, you will find yourself having to
maintain your release yourself; otherwise, you will be paying for commercial support. The
third possibility, ignoring the problem, should not be considered as an option!
In the next chapter, we will look at file storage and filesystems, and at the ways that the
choices you make there will affect the stability and maintainability of your embedded 
Linux system.

Further reading
The following resources contain more information about the topics that were introduced in
this chapter:

The Buildroot user manual, Buildroot Association:
http://buildroot.org/downloads/manual/manual.html
Yocto Project documentation, Yocto Project:
https://www.yoctoproject.org/documentation
Embedded Linux Development Using the Yocto Project Cookbook, by Alex González

http://buildroot.org/downloads/manual/manual.html
https://www.yoctoproject.org/documentation


Chapter 7: Developing with Yocto
Bringing up Linux on unsupported hardware can be a painstaking process. Luckily, Yocto
provides Board Support Packages (BSPs) to bootstrap embedded Linux development on
popular single-board computers such as the BeagleBone Black and Raspberry Pi 4.
Building on top of an existing BSP layer lets us quickly take advantage of complex built-in
peripherals such as Bluetooth and Wi-Fi. In this chapter, we will create a custom
application layer to do just that.
Next, we will look at the development workflow that's enabled by Yocto's extensible SDK.
Modifying software running on a target device usually means swapping out the SD card.
Since rebuilding and redeploying full images is too time-consuming, I will show you how
to use devtool to quickly automate and iterate over your work. While doing so, you will
learn how to save your work in your own layers so that it does not get lost.
Yocto not only builds Linux images but entire Linux distributions. We will discuss the
reasons why you would do that before going through the motions of assembling our own
Linux distribution. The many choices we will make include whether or not to add runtime
package management for rapid application development on the target device. This comes at
the cost of having to maintain a package database and remote package server, which I will
touch on last.
In this chapter, we will cover the following topics:

Building on top of an existing BSP
Capturing changes with devtool
Building your own distro
Provisioning a remote package server

Let's get started!

Technical requirements
To follow along with the examples in this chapter, make sure you have the following:

A Linux-based host system with a minimum of 60 GB available disk space
Yocto 3.1 (Dunfell) LTS release
Etcher for Linux
A microSD card reader and card
A Raspberry Pi 4
A 5V 3A USB-C power supply
An Ethernet cable and port for network connectivity



A Wi-Fi router
A smartphone with Bluetooth

You should have already built the 3.1 (Dunfell) LTS release of Yocto in Chapter 6,
Selecting a Build System. If you have not, then please refer to the Compatible Linux
Distribution and Build Host Packages sections of the Yocto Project Quick Build guide
(https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html)
before building Yocto on your Linux host according to the instructions in Chapter 6.
All the code for this chapter can be found in the Chapter07 folder of this book's GitHub
repository: https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-
Third-Edition.

Building on top of an existing BSP
A Board Support Package (BSP) layer adds support for a particular hardware device or
family of devices to Yocto. This support usually includes the bootloader, device tree blobs,
and additional kernel drivers needed to boot Linux on that specific hardware. A BSP may
also include any additional user space software and peripheral firmware needed to fully
enable and utilize all the features of the hardware. By convention, BSP layer names start
with the meta- prefix, followed by the machine's name. Locating the best BSP for your
target device is the first step toward building a bootable image for it using Yocto.
The OpenEmbedded layer index (https://layers.openembedded.org/layerindex) is the best
place to start looking for quality BSPs. Your board's manufacturer or silicon vendor may
also offer BSP layers. The Yocto Project provides a BSP for all variants of the Raspberry
Pi. You can find the GitHub repository for that BSP layer and all the other layers endorsed
by the Yocto project among the Yocto Project source repositories
(https://git.yoctoproject.org).

Building an existing BSP
The following exercises assume you have already cloned or extracted the Dunfell release of
Yocto to a directory named poky within your host environment. Before proceeding, we also
need to clone the following dependency layers one level up from that poky directory so that
the layer and poky directories sit next to each other:

$ git clone -b dunfell git://git.openembedded.org/meta-openembedded

$ git clone -b dunfell git://git.yoctoproject.org/meta-raspberrypi

Notice that the branch name of the dependency layers matches the Yocto release for
compatibility. Keep all three clones up to date and in sync with their remotes using periodic
git pull commands. The meta-raspberrypi layer is the BSP for all Raspberry Pis. Once
these dependencies are in place, you can build an image that's been customized for the
Raspberry Pi 4. But before we do that, let's explore the recipes for Yocto's generic images:

https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition
https://layers.openembedded.org/layerindex
https://git.yoctoproject.org/


1. First, navigate to the directory where you cloned Yocto:
$ cd poky

2. Next, move down into the directory where the recipes for the standard images are:
$ cd meta/recipes-core/images

3. List the core image recipes:
$ ls -1 core*

core-image-base.bb

core-image-minimal.bb

core-image-minimal-dev.bb

core-image-minimal-initramfs.bb

core-image-minimal-mtdutils.bb

core-image-tiny-initramfs.bb

4. Display the core-image-base recipe:
$ cat core-image-base.bb

SUMMARY = "A console-only image that fully supports the target
device \

hardware."

IMAGE_FEATURES += "splash"

LICENSE = "MIT"

inherit core-image

Notice that this recipe inherits from core-image, so it's importing the
contents of core-image.bbclass, which we will look at later.

5. Display the core-image-minimal recipe:
$ cat core-image-minimal.bb

SUMMARY = "A small image just capable of allowing a device to
boot."

IMAGE_INSTALL = "packagegroup-core-boot
${CORE_IMAGE_EXTRA_INSTALL}"

IMAGE_LINGUAS = " "

LICENSE = "MIT"

inherit core-image

IMAGE_ROOTFS_SIZE ?= "8192"

IMAGE_ROOTFS_EXTRA_SPACE_append =
"${@bb.utils.contains("DISTRO_FEATURES", "systemd", " + 4096",
"" ,d)}"

Like core-image-base, this recipe also inherits from the core-image class
file.

6. Display the core-image-minimal-dev recipe:
$ cat core-image-minimal-dev.bb

require core-image-minimal.bb

DESCRIPTION = "A small image just capable of allowing a device
to boot and \

is suitable for development work."



IMAGE_FEATURES += "dev-pkgs"

Notice that this recipe requires the core-image-minimal recipe from the
previous step. Recall that the require directive works much like include.
Also, notice that dev-pkgs is appended to the list of IMAGE_FEATURES.

7. Navigate up to the classes directory under poky/meta:
$ cd ../../classes

8. Lastly, display the core-image class file:
$ cat core-image.bbclass

Notice the long list of available IMAGE_FEATURES at the top of this class file,
including the aforementioned dev-pkgs feature.

Standard images such as core-image-minimal and core-image-minimal-dev are machine-
agnostic. In Chapter 6, Selecting a Build System, we built core-image-minimal for both the
QEMU Arm emulator and the BeagleBone Black. We could have just as easily built a
core-image-minimal image for the Raspberry Pi 4. In contrast, a BSP layer includes image
recipes intended for a specific board or series of boards.
Now, let's take a look at the rpi-test-image recipe inside the meta-rasberrypi BSP layer,
to see how support for Wi-Fi and Bluetooth is added to core-image-base for the Raspberry
Pi 4:

1. First, navigate one level above the directory where you cloned Yocto:
$ cd ../../..

2. Next, move down into the directory inside the meta-raspberrypi BSP layer, which is
where the image recipes for the Raspberry Pis are:

$ cd meta-raspberrypi/recipes-core/images

3. List the Raspberry Pi image recipes:
$ ls -1

rpi-basic-image.bb

rpi-hwup-image.bb

rpi-test-image.bb

4. Display the rpi-test-image recipe:
$ cat rpi-test-image.bb

# Base this image on core-image-base

include recipes-core/images/core-image-base.bb

COMPATIBLE_MACHINE = "^rpi$"

IMAGE_INSTALL_append = " packagegroup-rpi-test"

Notice that the IMAGE_INSTALL variable has been overridden so that it can
append packagegroup-rpi-test and include those packages on the image.

5. Navigate to the neighboring packagegroups directory under meta-

raspberrypi/recipes-core:
$ cd ../packagegroups

6. Lastly, display the packagegroup-rpi-test recipe:



$ cat packagegroup-rpi-test.bb

DESCRIPTION = "RaspberryPi Test Packagegroup"

LICENSE = "MIT"

LIC_FILES_CHKSUM =
"file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7
b4f302"

PACKAGE_ARCH = "${MACHINE_ARCH}"

inherit packagegroup

COMPATIBLE_MACHINE = "^rpi$"

OMXPLAYER  = "${@bb.utils.contains('MACHINE_FEATURES',
'vc4graphics', '', 'omxplayer', d)}"

RDEPENDS_${PN} = "\

    ${OMXPLAYER} \

    bcm2835-tests \

    rpio \

    rpi-gpio \

    pi-blaster \

    python3-rtimu \

    python3-sense-hat \

    connman \

    connman-client \

    wireless-regdb-static \

    bluez5 \

"

RRECOMMENDS_${PN} = "\

    ${@bb.utils.contains("BBFILE_COLLECTIONS", "meta-
multimedia", "bigbuckbunny-1080p bigbuckbunny-480p bigbuckbunny-
720p", "", d)} \

    ${MACHINE_EXTRA_RRECOMMENDS} \

"

Notice that the connman, connman-client, and bluez5 packages are included
in the list of runtime dependencies so that Wi-Fi and Bluetooth are fully
enabled.

Finally, let's build rpi-test-image for the Raspberry Pi 4:
1. First, navigate one level above the directory where you cloned Yocto:

$ cd ../../..

2. Next, set up your BitBake work environment:
$ source poky/oe-init-build-env build-rpi

This sets up a bunch of environment variables and puts you in a newly
created build-rpi directory.

3. Then, add the following layers to your image:
$ bitbake-layers add-layer ../meta-openembedded/meta-oe

$ bitbake-layers add-layer ../meta-openembedded/meta-python



$ bitbake-layers add-layer ../meta-openembedded/meta-networking

$ bitbake-layers add-layer ../meta-openembedded/meta-multimedia

$ bitbake-layers add-layer ../meta-raspberrypi

The order in which you add these layers matters because the meta-
networking and meta-multimedia layers both depend on the meta-python
layer. If bitbake-layers add-layer or bitbake-layers show-layers

starts failing due to parse errors, then delete the build-rpi directory and
restart this exercise from Step 1.

4. Verify that all the necessary layers have been added to the image:
$ bitbake-layers show-layers

There should be a total of eight layers in the list: meta, meta-poky, meta-
yocto-bsp, meta-oe, meta-python, meta-networking, meta-multimedia,
and meta-raspberrypi.

5. Observe the changes that the preceding bitbake-layers add-layer commands made
to bblayers.conf:

$ cat conf/bblayers.conf

The same eight layers from the previous step should be assigned to the 
BBLAYERS variable.

6. List the machines supported by the meta-raspberrypi BSP layer:
$ ls ../meta-raspberrypi/conf/machine

Notice that there are raspberrypi4 and raspberrypi4-64 machine
configurations.

7. Add the following line to your conf/local.conf file:
MACHINE = "raspberrypi4-64"

This overrides the following default in your conf/local.conf file:
MACHINE ??= "qemux86-64"

Setting the MACHINE variable to raspberrypi4-64 ensures that the image
we're about to build works for the Raspberry Pi 4.

8. Now, append ssh-server-openssh to the list of EXTRA_IMAGE_FEATURES in your
conf/local.conf file:

EXTRA_IMAGE_FEATURES ?= "debug-tweaks ssh-server-openssh"

This adds an SSH server to our image for local network access.
9. Lastly, build the image:

$ bitbake rpi-test-image

The build could take anywhere from minutes to hours to complete the first
time you run it, depending on how many CPU cores your host environment
has available. TARGET_SYS should be aarch64-poky-linux, while MACHINE
should be raspberrypi4-64, since this image is targeting 64-bit for the Arm
Cortex-A72 cores in the Pi 4.



Once the image has finished building, there should be a file named rpi-test-image-
raspberrypi4-64.rootfs.wic.bz2 in the tmp/deploy/images/raspberrypi4-64

directory:
$ ls -l tmp/deploy/images/raspberrypi4-64/rpi-test*wic.bz2

Notice that rpi-test-image-raspberrypi4-64.rootfs.wic.bz2 is a symbolic link
pointing to the actual image file in the same directory. An integer denoting the date and
time of the build is appended to the image filename before the wic.bz2 extension.
Now, write that image to a microSD card using Etcher and boot it on your Raspberry Pi 4:

1. Insert a microSD card into your host machine.
2. Launch Etcher.
3. Click Flash from file from Etcher.
4. Locate the wic.bz2 image that you built for the Raspberry Pi 4 and open it.
5. Click Select target from Etcher.
6. Select the microSD card that you inserted in Step 1.
7. Click Flash from Etcher to write the image.
8. Eject the microSD card when Etcher is done flashing.
9. Insert the microSD card into your Raspberry Pi 4.

10. Apply power to the Raspberry Pi 4 by way of its USB-C port.

Confirm that your Pi 4 booted successfully by plugging it into your Ethernet and observing
that the network activity lights blink.

Controlling Wi-Fi
In the previous exercise, we built a bootable image for the Raspberry Pi 4 that includes
working Ethernet, Wi-Fi, and Bluetooth. Now that the device has booted and connected to
your local network via Ethernet, let's connect to a nearby Wi-Fi network. We will use
connman for this exercise since that is what the meta-raspberrypi layer ships with out of
the box. Other BSP layers rely on different network interface configuration daemons such
as system-networkd and NetworkManager. Follow these steps:

1. The image we built has a hostname of raspberrypi4-64, so you should be able to ssh
into the device as root:

$ ssh root@raspberrypi4-64.local

Enter yes when you're asked if you want to continue connecting. You will
not be prompted for a password. If no host is found at raspberrypi4-
64.local, use a tool such as arp-scan to locate the IP address of your
Raspberry Pi 4 and ssh into that instead of doing so by hostname.

2. Once you are in, verify that the Wi-Fi driver is on board:



root@raspberrypi4-64:~# lsmod | grep 80211

cfg80211              753664  1 brcmfmac

rfkill                 32768  6 nfc,bluetooth,cfg80211

3. Start connman-client:
root@raspberrypi4-64:~# connmanctl

connmanctl>

4. Turn on Wi-Fi:
connmanctl> enable wifi

Enabled wifi

Disregard "Error wifi: Already enabled" if the Wi-Fi is already on.
5. Register connmanctl as the connection agent:

connmanctl> agent on

Agent registered

6. Scan for Wi-Fi networks:
connmanctl> scan wifi

Scan completed for wifi

7. List all the available Wi-Fi networks:
connmanctl> services

*AO Wired                ethernet_dca6320a8ead_cable

    RT-
AC66U_B1_38_2G    wifi_dca6320a8eae_52542d41433636555f42315f3338
5f3247_managed_psk

    RT-
AC66U_B1_38_5G    wifi_dca6320a8eae_52542d41433636555f42315f3338
5f3547_managed_psk

RT-AC66U_B1_38_2G and RT-AC66U_B1_38_5G are Wi-Fi network SSIDs for
an ASUS router. Your list will look different. The *AO part before Wired
indicates that the device is currently online via Ethernet.

8. Connect to a Wi-Fi network:
connmanctl> connect
wifi_dca6320a8eae_52542d41433636555f42315f33385f3547_managed_psk

Agent RequestInput
wifi_dca6320a8eae_52542d41433636555f42315f33385f3547_managed_psk

  Passphrase = [ Type=psk, Requirement=mandatory ]

Passphrase? somepassword

Connected
wifi_dca6320a8eae_52542d41433636555f42315f33385f3547_managed_psk

Replace the service identifier after connect with your service identifier or
target network from the previous step. Substitute your Wi-Fi passphrase for
somepassword.

9. List the services again:
connmanctl> services

*AO Wired                ethernet_dca6320a8ead_cable



*AR RT-
AC66U_B1_38_5G    wifi_dca6320a8eae_52542d41433636555f42315f3338
5f3547_managed_psk

    RT-
AC66U_B1_38_2G    wifi_dca6320a8eae_52542d41433636555f42315f3338
5f3247_managed_psk

This time, *AR appears before the SSID you just connected to, indicating that
this network connection is ready. Ethernet takes precedence over Wi-Fi, so
the device remains online over Wired.

10. Exit connman-client:
connmanctl> quit

11. Unplug your Raspberry Pi 4 from the Ethernet, thereby closing your ssh session:
root@raspberrypi4-64:~# client_loop: send disconnect: Broken
pipe

12. Reconnect to your Raspberry Pi 4:
$ ssh root@raspberrypi4-64.local

13. Start connman-client again:
root@raspberrypi4-64:~# connmanctl

connmanctl>

14. List the services again:
connmanctl> services

*AO RT-
AC66U_B1_38_5G    wifi_dca6320a8eae_52542d41433636555f42315f3338
5f3547_managed_psk

Observe that the Wired connection is now gone and that the Wi-Fi SSID you
connected to that was previously ready has now been promoted to online.

The connman daemon saves your Wi-Fi credentials to a network profile directory under
/var/lib/connman, which persists on the microSD card. This means that connman will
automatically reconnect to your Wi-Fi network when your Raspberry Pi 4 boots up. There
is no need to go through these steps again after power cycling. You can leave your Ethernet
unplugged if you like.

Controlling Bluetooth
In addition to the connman and connman-client packages, the meta-raspberrypi layer
includes bluez5 for its Bluetooth stack. All of these packages, as well as the requisite
Bluetooth drivers, are included in rpi-test-image, which we built for the Raspberry 
Pi 4. Let's get Bluetooth up and running and attempt to pair it with another device:

1. Power up your Raspberry Pi 4 and ssh in:
$ ssh root@raspberrypi4-64.local

2. Next, verify that the Bluetooth drivers are on board:



root@raspberrypi4-64:~# lsmod | grep bluetooth

bluetooth             438272  9 bnep

ecdh_generic           24576  1 bluetooth

rfkill                 32768  6 nfc,bluetooth,cfg80211

3. Initialize the HCI UART driver for Bluetooth connectivity:
root@raspberrypi4-64:~# btuart

bcm43xx_init

Flash firmware /lib/firmware/brcm/BCM4345C0.hcd

Set Controller UART speed to 3000000 bit/s

Device setup complete

4. Start connman-client:
root@raspberrypi4-64:~# connmanctl

connmanctl>

5. Turn on Bluetooth:
connmanctl> enable bluetooth

Enabled Bluetooth

Disregard "Error bluetooth: Already enabled" if Bluetooth is 
already on.

6. Exit connman-client:
connmanctl> quit

7. Start the Bluetooth CLI:
root@raspberrypi4-64:~# bluetoothctl

Agent registered

[CHG] Controller DC:A6:32:0A:8E:AF Pairable: yes

8. Request the default agent:
[bluetooth]# default-agent

Default agent request successful

9. Power on the controller:
[bluetooth]# power on

Changing power on succeeded

10. Show information about the controller:
[bluetooth]# show

Controller DC:A6:32:0A:8E:AF (public)

Name: BlueZ 5.55

Alias: BlueZ 5.55

Class: 0x00200000

Powered: yes

Discoverable: no

DiscoverableTimeout: 0x000000b4

Pairable: yes

11. Start scanning for Bluetooth devices:



[bluetooth]# scan on

Discovery started

[CHG] Controller DC:A6:32:0A:8E:AF Discovering: yes

…

[NEW] Device DC:08:0F:03:52:CD Frank's iPhone

…

If your smartphone is nearby and has Bluetooth enabled, it should appear in
the list as a [NEW] device. The DC:08:0F:03:52:CD part next to Frank's
iPhone is the Bluetooth MAC address of my smartphone.

12. Stop scanning for Bluetooth devices:
[bluetooth]# scan off

…

[CHG] Controller DC:A6:32:0A:8E:AF Discovering: no

Discovery stopped

13. If you have an iPhone open, go to Bluetooth under Settings so that you can accept the
pairing request from your Raspberry Pi 4.

14. Attempt to pair with your smartphone:
[bluetooth]# pair DC:08:0F:03:52:CD

Attempting to pair with DC:08:0F:03:52:CD

[CHG] Device DC:08:0F:03:52:CD Connected: yes

Request confirmation

[agent] Confirm passkey 936359 (yes/no):

Substitute your smartphone's Bluetooth MAC address for
DC:08:0F:03:52:CD.

15. Before entering yes, accept the pairing request from your smartphone:



Figure 7.1 – Bluetooth pairing request

16. Enter yes to confirm the passkey:
[agent] Confirm passkey 936359 (yes/no): yes

[CHG] Device DC:08:0F:03:52:CD ServicesResolved: yes

[CHG] Device DC:08:0F:03:52:CD Paired: yes



Pairing successful

[CHG] Device DC:08:0F:03:52:CD ServicesResolved: no

[CHG] Device DC:08:0F:03:52:CD Connected: no

17. Connect to your smartphone:
[bluetooth]# connect DC:08:0F:03:52:CD

Attempting to connect to DC:08:0F:03:52:CD

[CHG] Device DC:08:0F:03:52:CD Connected: yes

Connection successful

[CHG] Device DC:08:0F:03:52:CD ServicesResolved: yes

Authorize service

Again, substitute your smartphone's Bluetooth MAC address for
DC:08:0F:03:52:CD.

18. When prompted to authorize the service, enter yes:
[agent] Authorize service 0000110e-0000-1000-8000-00805f9b34fb
(yes/no): yes

[Frank's iPhone]#

Your Raspberry Pi 4 is now paired and connected to your smartphone over Bluetooth. It
should appear on your smartphone's list of Bluetooth devices as BlueZ 5.55. The
bluetoothctl program has numerous commands and submenus. We've only just scratched
the surface. I recommend entering help and perusing the self-documentation to get an idea
of what you can do from the command line. Like connman, the BlueZ Bluetooth stack is a
D-Bus service, so you can communicate with it programmatically over D-Bus from Python
or other high-level programming languages using D-Bus bindings.

Adding a custom layer
If you are using a Raspberry Pi 4 to prototype a new product, then you can quickly generate
your own custom images by adding packages to the list that's been assigned to the
IMAGE_INSTALL_append variable in conf/local.conf. While this simple technique works,
at some point, you are going to want to start developing your own embedded application.
How do you build this additional software so that you can include it in your custom
images? The answer is that you must create a custom layer with a new recipe to build your
software. Let's get started:

1. First, navigate one level above the directory where you cloned Yocto.
2. Next, set up your BitBake work environment:

$ source poky/oe-init-build-env build-rpi

This sets a bunch of environment variables and puts you back in the 
build-rpi directory.

3. Create a new layer for your application:
$ bitbake-layers create-layer ../meta-gattd



NOTE: Starting bitbake server...

Add your new layer with 'bitbake-layers add-layer ../meta-gattd'

This layer is named meta-gattd for the GATT daemon. Name your layer
whatever you like, but please adhere to the meta- prefix convention.

4. Navigate up to the new layer directory:
$ cd ../meta-gattd

5. Examine the layer's file structure:
$ tree

.

├── conf

│   └── layer.conf

├── COPYING.MIT

├── README

└── recipes-example

    └── example

        └── example_0.1.bb

6. Rename the recipes-examples directory:
$ mv recipes-example recipes-gattd

7. Rename the example directory:
$ cd recipes-gattd

$ mv example gattd

8. Rename the example recipe file:
$ cd gattd

$ mv example_0.1.bb gattd_0.1.bb

9. Display the renamed recipe file:
$ cat gattd_0.1.bb

You want to populate this recipe with the metadata that's needed to build
your software, including SRC_URI and md5 checksums.

10. For now, just replace gattd_0.1.bb with the finished recipe I have provided for you in
MELP/Chapter07/meta-gattd/recipes-gattd/gattd_0.1.bb.

11. Create a Git repository for your new layer and push it to GitHub.

Now that we have a custom layer for our application, let's add it to your working image:
1. First, navigate one level above the directory where you cloned Yocto:

$ cd ../../..

2. Clone your layer or my meta-gattd layer from GitHub:
$ git clone https://github.com/fvasquez/meta-gattd.git

Replace fvasquez with your GitHub username and meta-gattd with your
layer's repo name.

3. Next, set up your BitBake work environment:



$ source poky/oe-init-build-env build-rpi

This sets a bunch of environment variables and puts you back in the 
build-rpi directory.

4. Then, add the newly cloned layer to the image:
$ bitbake-layers add-layer ../meta-gattd

Replace meta-gattd with the name of your layer.
5. Verify that all the necessary layers have been added to the image:

$ bitbake-layers show-layers

There should be a total of nine layers in the list, including your new layer.
6. Now, add the extra package to your conf/local.conf file:

CORE_IMAGE_EXTRA_INSTALL += "gattd"

CORE_IMAGE_EXTRA_INSTALL is a convenience variable that's used to add
extra packages to an image that inherits from the core-image class, like the
rpi-test-image does. IMAGE_INSTALL is the variable that controls what
packages are included in any image. We cannot use IMAGE_INSTALL +=

"gattd" in conf/local.conf because it replaces the default lazy assignment
that's done in core-image.bbclass. Use IMAGE_INSTALL_append = "

gattd" or CORE_IMAGE_EXTRA_INSTALL += " gattd" instead.
7. Lastly, rebuild the image:

$ bitbake rpi-test-image

If your software successfully builds and installs, it should be included on the finished rpi-
test-image-raspberrypi4-64.rootfs.wic.bz2 image. Write that image to a microSD
card and boot it on your Raspberry Pi 4 to find out.
Adding packages to conf/local.conf makes sense during the earliest stages of
development. When you are ready to share the fruits of your labor with the rest of your
team, you should create an image recipe and put your packages there. At the end of the
previous chapter, we went all the way and wrote a nova-image recipe to add a helloworld
package to core-image-minimal.
Now that we've spent a good amount of time testing newly built images on actual hardware,
it's time to turn our attention back to software. In the next section we'll look at a tool that
was designed to streamline the tedious compile, test, and debug cycle we've grown
accustomed to while developing embedded software.

Capturing changes with devtool
In the previous chapter, you learned how to create a recipe for a helloworld program from
scratch. A copy-paste approach to packaging recipes may work initially, but it soon
becomes very frustrating as your project grows and the number of recipes you need to
maintain multiplies. I'm here to show you a better way of working with package recipes –



both yours and those that are contributed to upstream by some third party. It is called
devtool and it is the cornerstone of Yocto's extensible SDK.

Development workflows
Before you get started with devtool, you want to make sure that you're doing your work in
a new layer instead of modifying recipes in-tree. Otherwise, you could easily overwrite and
lose hours and hours of work:

1. First, navigate one level above the directory where you cloned Yocto.
2. Next, set up your BitBake work environment:

$ source poky/oe-init-build-env build-mine

This sets a bunch of environment variables and puts you in a new 
build-mine directory.

3. Set MACHINE in conf/local.conf for 64-bit Arm:
MACHINE ?= "quemuarm64"

4. Create your new layer:
$ bitbake-layers create-layer ../meta-mine

5. Now, add your new layer:
$ bitbake-layers add-layer ../meta-mine

6. Check that your new layer was created where you want it to be:
$ bitbake-layers show-layers

There should be a total of four layers in the list; that is, meta, meta-poky, 
meta-yocto-bsp, and meta-mine.

To get some first-hand experience with development workflows, you are going to need a
target to deploy to. That means building an image:

$ devtool build-image core-image-full-cmdline

Building a full image takes a few hours the first time you do so. When it's complete, go
ahead and boot it:

$ runqemu qemuarm64 nographic

[…]

Poky (Yocto Project Reference Distro) 3.1.6 qemuarm64 ttyAMA0

qemuarm64 login: root

root@qemuarm64:~#

By specifying the nographic option, we can run QEMU directly in a separate shell. This
makes typing easier than having to cope with the emulated graphics output. Log in as root.
There is no password. To exit QEMU when running in nographic mode, enter Ctrl + A,
followed by x, into the target shell. Leave QEMU running for now because we need it for
the subsequent exercises. You can SSH into this VM with ssh root@192.168.7.2.
devtool supports three common development workflows:



Add a new recipe.
Patch the source built by an existing recipe.
Upgrade a recipe to fetch a newer version of the upstream source.

When you initiate any of these workflows, devtool creates a temporary workspace for you
to make your changes. This sandbox contains the recipe files and fetched source. When you
are done with your work, devtool integrates your changes back into your layer so that the
workspace can be destroyed.

Creating a new recipe
Let's say there is some open source software you want that no one has submitted a 
BitBake recipe for yet. And let's say that software in question is the lightweight bubblewrap
container runtime. In this instance, you could download a source tarball release of
bubblewrap from GitHub and create a recipe for it. That's exactly what devtool add does.
First, devtool add creates a workspace with its own local Git repository. Inside this new
workspace directory, it creates a recipes/bubblewrap directory and extracts the tarball
contents into a sources/bubblewrap directory. devtool knows about popular build systems
such as Autotools and CMake and will do its best to figure out what kind of project this is
(Autotools, in the case of bubblewrap). It then uses parsed metadata and built package data
cached from previous BitBake builds to figure out the values of DEPENDS and RDEPENDS, as
well as what files to inherit and require. Let's get started:

1. First, open another shell and navigate one level above the directory where you cloned
Yocto.

2. Next, set up your BitBake environment:
$ source poky/oe-init-build-env build-mine

This sets a bunch of environment variables and puts you back in your
build-mine working directory.

3. Then, run devtool add with the URL of the source tarball release:
$ devtool add
https://github.com/containers/bubblewrap/releases/download/v0.4.
1/bubblewrap-0.4.1.tar.xz

If everything goes according to plan, devtool add will generate a recipe that
you can then build.

4. Before you build your new recipe, let's take a look at it:
$ devtool edit-recipe bubblewrap

devtool will open recipes/bubblewrap/bubblewrap_0.4.1.bb in an editor.
Notice that devtool has already filled in the md5 checksums for you.

5. Add this line to the end of bubblewrap_0.4.1.bb:
FILES_${PN} += "/usr/share/*"



Correct any obvious mistakes, save any changes, and exit your editor.
6. To build your new recipe, use the following command:

$ devtool build bubblewrap

7. Next, deploy the compiled bwrap executable to the target emulator:
$ devtool deploy-target bubblewrap root@192.168.7.2

This installs the necessary build artifacts onto the target emulator.
8. From your QEMU shell, run the bwrap executable that you just built and deployed:

root@qemuarm64:~# bwrap --help

If you see a bunch of bubblewrap-related self-documentation, then the build
and deployment were successful. If you do not, then use devtool to repeat
the edit, build, and deploy steps until you are convinced that bubblewrap
works.

9. Once you are satisfied, clean up your target emulator:
$ devtool undeploy-target bubblewrap root@192.168.7.2

10. Merge all your work back into your layer:
$ devtool finish -f bubblewrap ../meta-mine

11. Delete the leftover sources from the workspace:
$ rm -rf workspace/sources/bubblewrap

If you think others might benefit from your new recipe, then submit a patch to Yocto.

Modifying the source built by a recipe
Let's say you find a bug in jq, a command-line JSON preprocessor. You search the Git
repository at https://github.com/stedolan/jq and find that no one has reported the issue.
Then, you look at the source code. It turns out that the fix requires just a few small code
changes, so you decide to patch jq yourself. That's where devtool modify comes in.
This time, when devtool looks at Yocto's cached metadata, it sees that a recipe already
exists for jq. Like devtool add, devtool modify creates a new temporary workspace with
its own local Git repository, where it copies the recipe files and extracts the upstream
sources. jq is written in C and located in an existing OpenEmbedded layer named meta-oe.
We need to add this layer, as well as jq's dependencies, to our working image before we can
modify the package source:

1. First, delete a couple of layers from your build-mine environment:
$ bitbake-layers remove-layer workspace

$ bitbake-layers remove-layer meta-mine

2. Next, clone the meta-openembedded repository from GitHub:
$ git clone -b dunfell https://github.com/openembedded/meta-
openembedded.git ../meta-openembedded

https://github.com/stedolan/jq


3. Then, add the meta-oe and meta-mine layers to your image:
$ bitbake-layers add-layer ../meta-openembedded/meta-oe

$ bitbake-layers add-layer ../meta-mine

4. Verify that all the necessary layers have been added to the image:
$ bitbake-layers show-layers

There should be a total of five layers in the list; that is, meta, meta-poky,
meta-yocto-bsp, meta-oe, and meta-mine.

5. Add the following line to conf/local.conf because the onig package is a runtime
dependency of jq:

IMAGE_INSTALL_append = " onig"

6. Rebuild your image:
$ devtool build-image core-image-full-cmdline

7. Exit QEMU with Ctrl + A and x from your other shell and restart the emulator:
$ runqemu qemuarm64 nographic

Like many patching tools, devtool modify uses your commit messages to generate patch
filenames, so keep your commit messages brief and meaningful. It also automatically
generates the patch files themselves based on your Git history and creates a .bbappend file
with the new patch filenames. Remember to prune and squash your Git commits so that
devtool divides your work up into sensible patch files:

1. Run devtool modify with the name of the package you wish to modify:
$ devtool modify jq

2. Make your code changes using your preferred editor. Use the standard Git add and
commit workflow to keep track of what you've done.

3. Build the modified sources using the following command:
$ devtool build jq

4. Next, deploy the compiled jq executable to the target emulator:
$ devtool deploy-target jq root@192.168.7.2

This installs the necessary build artifacts onto the target emulator.
If connecting fails, then delete the stale emulator's key, as shown here:
$ ssh-keygen -f "/home/frank/.ssh/known_hosts" \

-R "192.168.7.2"

Replace frank with your username in the path.
5. From your QEMU shell, run the jq executable that you just built and deployed. If you

can no longer reproduce the bug, then your changes worked. Otherwise, repeat the
edit, build, and deploy steps until you are satisfied.

6. Once you are satisfied, clean up your target emulator:
$ devtool undeploy-target jq root@192.168.7.2

7. Merge all your work back into your layer:



$ devtool finish jq ../meta-mine

If the merge fails because the Git source tree is dirty, then remove or unstage
any leftover jq build artifacts and try devtool finish again.

8. Delete the leftover sources from the workspace:
$ rm -rf workspace/sources/jq

If you think others might benefit from your patch(es), then submit them to the upstream
project maintainers.

Upgrading a recipe to a newer version
Let's say you're running a Flask web server on your target device and a new version of
Flask has just been released. This latest version of Flask has a new feature that you just
can't wait to get your hands on. Instead of waiting for the Flask recipe maintainers to
upgrade to the new release version, you decide to upgrade the recipe yourself. You would
think that would be as easy as bumping a version number in a recipe file, but there are also
md5 checksums involved. Wouldn't it be great if the tedious process could be fully
automated? Well, guess what devtool upgrade is for?
Flask is a Python 3 library, so your image needs to include Python 3, Flask, and Flask's
dependencies before you can upgrade it. To obtain all those, follow these steps:

1. First, delete a couple of layers from your build-mine environment:
$ bitbake-layers remove-layer workspace

$ bitbake-layers remove-layer meta-mine

2. Next, add the meta-python and meta-mine layers to your image:
$ bitbake-layers add-layer ../meta-openembedded/meta-python

$ bitbake-layers add-layer ../meta-mine

3. Verify that all the necessary layers have been added to the image:
$ bitbake-layers show-layers

There should be a total of six layers in the list; that is, meta, meta-poky, 
meta-yocto-bsp, meta-oe, meta-python, and meta-mine.

4. Now, there should be lots of Python modules available for you to use:
$ bitbake -s | grep ^python3

One of those modules is python3-flask.
5. Make sure python3 and python3-flask are being built and installed on 

your image by searching for them both inside conf/local.conf. If they are 
not there, then you can include them both by adding the following line to your
conf/local.conf:

IMAGE_INSTALL_append = " python3 python3-flask"

6. Rebuild your image:
$ devtool build-image core-image-full-cmdline



7. Exit QEMU with Ctrl + A and x from your other shell and restart the emulator:
$ runqemu qemuarm64 nographic

IMPORTANT NOTE
At the time of writing, the version of Flask included with meta-python was
1.1.1 and the latest version of Flask available on PyPI was 1.1.2.

Now that all the pieces are in place, let's do the upgrade:
1. First, run devtool upgrade with the name of the package and the target version to

upgrade to:
$ devtool upgrade python3-flask --version 1.1.2

2. Before you build your upgraded recipe, let's take a look at it:
$ devtool edit-recipe python3-flask

devtool will open recipes/python3/python3-flask_1.1.2.bb in 
an editor:
inherit pypi setuptools3

require python-flask.inc

There is nothing version-specific to change in this recipe, so save the new
file and exit your editor.

3. To build your new recipe, use this command:
$ devtool build python3-flask

4. Next, deploy your new Flask module to the target emulator:
$ devtool deploy-target python3-flask root@192.168.7.2

This installs the necessary build artifacts onto the target emulator.
If connecting fails, then delete the stale emulator's key, as shown here:
$ ssh-keygen -f "/home/frank/.ssh/known_hosts" \

-R "192.168.7.2"

Replace frank with your username in the path.
5. From your QEMU shell, launch a python3 REPL and check what version of Flask was

deployed:
root@qemuarm64:~# python3

>>> import flask

>>> flask.__version__

'1.1.2'

>>>

If entering flask.__version__ in the REPL returns '1.1.2', then the
upgrade worked. If it does not, then use devtool to repeat the edit, build,
and deploy steps until you've figured out what went wrong.

6. Once you are satisfied, clean up your target emulator:
$ devtool undeploy-target python3-flask root@192.168.7.2



7. Merge all your work back into your layer:
$ devtool finish python3-flask ../meta-mine

If the merge fails because the Git source tree is dirty, then remove or unstage
any leftover python3-flask build artifacts and try devtool finish again.

8. Delete the leftover sources from the workspace:
$ rm -rf workspace/sources/python3-flask

If you think others might also be anxious to upgrade their distros to the latest version of a
package, then submit a patch to Yocto.
Finally, we've arrived at the topic of how to build our own distro. This feature is unique to
Yocto and notably missing from Buildroot. A distro layer is a powerful abstraction that can
be shared across multiple projects targeting different hardware.

Building your own distro
At the start of the previous chapter, I told you that Yocto gives you the ability to build your
own custom Linux distribution. This is done by way of a distro layer like meta-poky. As we
have seen, you don't need your own distro layer to build your own custom images. You can
go a long way without ever having to modify any of Poky's distribution metadata. But if
you want to alter distro policies (for example, features, C library implementations, choice of
package manager, and so on), then you can choose to build your own distro.
Building your own distro is a three-step process:

1. Create a new distro layer.
2. Create a distro configuration file.
3. Add more recipes to your distro.

But before we get into the technical details of how to do that, let's consider when it's the
right time to roll your own distro.

When and when not to
Distro settings define the package format (rpm, deb, or ipk), package feed, init system
(systemd or sysvinit), and specific package versions. You could create your own distro in
a new layer by inheriting from Poky and overriding what needs to change for your distro.
However, if you find yourself adding a lot of values to your build directory's local.conf
file aside from the obvious local settings (such as relative paths), then it is probably time to
create your own distro from scratch.

Creating a new distro layer



You know how to create a layer. Creating a distro layer is no different. Let's get started:
1. First, navigate one level above the directory where you cloned Yocto.
2. Next, set up your BitBake work environment:

$ source poky/oe-init-build-env build-rpi

This sets a bunch of environment variables and puts you back in the build-
rpi directory from earlier.

3. Delete the meta-gattd layer from your build-rpi environment:
$ bitbake-layers remove-layer meta-gattd

4. Comment out or delete CORE_IMAGE_EXTRA_INSTALL from conf/local.conf:
#CORE_IMAGE_EXTRA_INSTALL += "gattd"

5. Create a new layer for our distro:
$ bitbake-layers create-layer ../meta-mackerel

6. Now, add our new layer to the build-rpi configuration:
$ bitbake-layers add-layer ../meta-mackerel

The name of our distro is mackerel. Creating our own distro layer enables us to keep distro
policies separate from package recipes (the implementation).

Configuring your distro
Create the distro configuration file in the conf/distro directory of your 
meta-mackerel distro layer. Give it the same name as your distro (for example,
mackerel.conf).
Set the required DISTRO_NAME and DISTRO_VERSSION variables in
conf/distro/mackerel.conf:

DISTRO_NAME = "Mackerel (Mackerel Embedded Linux Distro)"

DISTRO_VERSION = "0.1"

The following optional variables can also be set in mackerel.conf:
DISTRO_FEATURES: Add software support for these features.

DISTRO_EXTRA_RDEPENDS: Add these packages to all images.

DISTRO_EXTRA_RRECOMMENDS: Add these packages if they exist.

TCLIBC: Select this version of the C standard library.

Once you are done with those variables, you can define just about any variable in 
conf/local.conf that you want for your distro. Look at other distros' conf/distro
directories, such as Poky's, to see how they organize things or copy and use
conf/distro/defaultsetup.conf as a template. If you decide to break your distro
configuration file up into multiple include files, make sure to place them in the
conf/distro/include directory of your layer.



Adding more recipes to your distro
Add more distro-related metadata to your distro layer. You will want to add recipes for
additional configuration files. These are configuration files that have yet to be installed by
an existing recipe. More importantly, you will also want to add append files to customize
existing recipes and add their configuration files to your distro.

Runtime package management
Including a package manager for your distro images is great for enabling secure over-the-air
updates and rapid application development. When your team works on software that revs
multiple times a day, frequent package updates is one way to keep everybody in sync and
moving forward. Full image updates are unnecessary (only one package changes) and
disruptive (reboot required). Being able to fetch packages from a remote server and install
them on a target device is known as runtime package management.
Yocto has support for different package formats (rpm and ipk) and different package
managers (dnf and opkg). The package format you select for your distro determines which
package manager you can include on it.
To select a package format for our distro, you can set the PACKAGE_CLASSES variable 
in your distro's conf file. Add this line to meta-mackerel/conf/distro/mackerel.conf:

PACKAGE_CLASSES ?= "package_ipk"

Now, let's return to the build-rpi directory:
$ source poky/oe-init-build-env build-rpi

We are targeting the Raspberry Pi 4, so make sure MACHINE is still set accordingly in
conf/local.conf:

MACHINE = "raspberrypi4-64"

Comment out PACKAGE_CLASSES in your build directory's conf/local.conf since our distro
already selects package_ipk:

#PACKAGE_CLASSES ?= "package_rpm"

To enable runtime package management, append "package-management" to the list of
EXTRA_IMAGE_FEATURES in your build directory's conf/local.conf:

EXTRA_IMAGE_FEATURES ?= "debug-tweaks ssh-server-openssh package-
management"

This will install a package database containing all the packages from your current build
onto your distro image. A prepopulated package database is optional because you can
always initialize a package database on the target after your distro image has been
deployed.
Lastly, set the DISTRO variable in your build directory's conf/local.conf file to the name
of our distro:

DISTRO = "mackerel"



This points your build directory's conf/local.conf file at our distro configuration file.
Finally, we are ready to build our distro:

$ bitbake -c clean rpi-test-image

$ bitbake rpi-test-image

We are rebuilding rpi-test-image with a different package format, so this will take a little
while. The finished images are placed in a different directory this time around:

$ ls tmp-glibc/deploy/images/raspberrypi4-64/rpi-test-image*wic.bz2

Write the image to a microSD card using Etcher and boot it on your Raspberry Pi 4. Plug it
into your Ethernet and SSH in like you did previously:

$ ssh root@raspberrypi4-64.local

If connecting fails, then delete the Pi's stale key, as shown here:
$ ssh-keygen -f "/home/frank/.ssh/known_hosts" \

-R "raspberrypi4-64.local"

Replace frank with your username in the path.
Once you have logged in, verify that the opkg package manager has been installed:

root@raspberrypi4-64:~# which opkg

/usr/bin/opkg

A package manager isn't of much use without a remote package server to pull it from. Let's
look at that next.

Provisioning a remote package server
Setting up an HTTP remote package server and pointing your target clients at it is easier
than you might think. The client-side server address configuration varies between package
managers. We will configure opkg manually on the Raspberry Pi 4.
Let's start with the package server:

1. First, navigate one level above the directory where you cloned Yocto.
2. Next, set up your BitBake work environment:

$ source poky/oe-init-build-env build-rpi

This sets a bunch of environment variables and puts you back in the 
build-rpi directory.

3. Build the curl package:
$ bitbake curl

4. Populate the package index:
$ bitbake package-index

5. Locate the package installer files:
$ ls tmp-glibc/deploy/ipk



There should be three directories named aarch64, all, and
raspberrypi4_64 in ipk. The architecture directory is aarch64, while the
machine directory is raspberrypi4_64. The names of these two directories
will vary, depending on how your image has been configured for building.

6. Navigate to the ipk directory, which is where the package installer files are:
$ cd tmp-glibc/deploy/ipk

7. Get the IP address of your Linux host machine.
8. Start the HTTP package server:

$ sudo python3 -m http.server --bind 192.168.1.69 80

[sudo] password for frank:

Serving HTTP on 192.168.1.69 port 80 (http://192.168.1.69:80/)
...

Replace 192.168.1.69 with your Linux host machine's IP address.

Now, let's configure the target client:
1. SSH back into your Raspberry Pi 4:

$ ssh root@raspberrypi4-64.local

2. Edit /etc/opkg/opkg.conf so that it looks like this:
src/gz all http://192.168.1.69/all

src/gz aarch64 http://192.168.1.69/aarch64

src/gz raspberrypi4_64 http://192.168.1.69/raspberrypi4_64

dest root /

option lists_dir /var/lib/opkg/lists

Replace 192.168.1.69 with your Linux host machine's IP address.
3. Run opkg update:

root@raspberrypi4-64:~# opkg update

Downloading http://192.168.1.69/all/Packages.gz.

Updated source 'all'.

Downloading http://192.168.1.69/aarch64/Packages.gz.

Updated source 'aarch64'.

Downloading http://192.168.1.69/raspberrypi4_64/Packages.gz.

Updated source 'raspberrypi4_64'.

4. Try to run curl:
root@raspberrypi4-64:~# curl

The command should fail because curl is not installed.
5. Install curl:

root@raspberrypi4-64:~# opkg install curl

Installing libcurl4 (7.69.1) on root

Downloading http://192.168.1.69/aarch64/libcurl4_7.69.1-
r0_aarch64.ipk.

Installing curl (7.69.1) on root



Downloading http://192.168.1.69/aarch64/curl_7.69.1-
r0_aarch64.ipk.

Configuring libcurl4.

Configuring curl.

6. Verify that curl was installed:
root@raspberrypi4-64:~# curl

curl: try 'curl --help' for more information

root@raspberrypi4-64:~# which curl

/usr/bin/curl

As you continue to work in the build-rpi directory from a Linux host machine, you can
check for updates from your Raspberry Pi 4:

root@raspberrypi4-64:~# opkg list-upgradable

Then, you can apply them:
root@raspberrypi4-64:~# opkg upgrade

This is faster than rewriting an image, swapping out the microSD card, and rebooting.

Summary
I know that was a lot to absorb. And trust me – this is just the beginning. Yocto is a never-
ending rabbit hole that you don't climb out of. The recipes and tools are constantly
changing and much of the documentation, while there is lots of it, is sadly out of date.
Luckily, there is devtool, which automates much of the tedium and mistakes of 
copy-paste development away. If you use the tools provided for you and continually save
your work to your own layers, Yocto doesn't have to be painful. Before you know it, you'll
be rolling your own distro layer and running your own remote package server.
A remote package server is just one way to deploy packages and applications. We will learn
about a few others later in Chapter 16, Packaging Python. Despite the title, some of the
techniques we'll look at in that chapter (for example, conda and Docker) apply to any
programming language. While package managers are great for development, runtime
package management is not commonly used on embedded systems running in production.
We will look closely at full image and containerized over-the-air update mechanisms in
Chapter 10, Updating Software in the Field.

Further reading
The following resources contain more information about the topics that were introduced in
this chapter:

Transitioning to a Custom Environment, Yocto Project:
https://www.yoctoproject.org/docs/transitioning-to-a-custom-environment

https://www.yoctoproject.org/docs/transitioning-to-a-custom-environment


Yocto Project Development Manual, by Scott Rifenbark:
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html
Using Devtool to Streamline Your Yocto Project Workflow, by Tim Orling: 
https://www.youtube.com/watch?v=CiD7rB35CRE
Using a Yocto build workstation as a remote opkg repository, Jumpnow Technologies:
https://jumpnowtek.com/yocto/Using-your-build-workstation-as-a-remote-package-
repository.html

https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html
https://www.youtube.com/watch?v=CiD7rB35CRE
https://jumpnowtek.com/yocto/Using-your-build-workstation-as-a-remote-package-repository.html


Chapter 8: Yocto Under the Hood
In this chapter, we'll dive deeper into Yocto, embedded Linux's premier build system. We
will begin with a tour of Yocto's architecture, taking you through the entire build workflow
step by step. Next, we'll look at Yocto's multi-layer approach and why it is a good idea to
separate metadata into different layers. As more and more BitBake layers stack up inside
your projects, problems will inevitably arise. We will examine a number of ways to debug
Yocto build failures, including task logs, devshell, and dependency graphs.
After taking apart the build system, we'll revisit the topic of BitBake from the previous
chapter. This time around, we'll cover more of the basic syntax and semantics so that you
can write your own recipes from scratch. We'll look at real-world examples of BitBake shell
and Python code from actual recipe, include, and configuration files so that you know what
to expect when you begin to venture out into Yocto's ocean of metadata.
In this chapter, we will cover the following topics:

Decomposing Yocto's architecture and workflow
Separating metadata into layers
Troubleshooting build failures
Understanding BitBake syntax and semantics

Let's get started!

Technical requirements
To follow along with the examples in this chapter, make sure you have the following:

A Linux-based system host system with a minimum of 60 GB available disk space
Yocto 3.1 (Dunfell) LTS release

You should have already built the 3.1 (Dunfell) LTS release of Yocto in Chapter 6, 
Selecting a Build System. If you have not, then please refer to the Compatible Linux
Distribution and Build Host Packages sections of the Yocto Project Quick Build guide
(https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html)
before building Yocto on your Linux host according to the instructions in Chapter 6.

Decomposing Yocto's architecture and workflow
Yocto is a complex beast. Taking it apart is the first step toward understanding it. The
architecture of a build system can be organized in terms of its workflow. Yocto gets its
workflow from the OpenEmbbedded project, which it is based on. Source materials feed

https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html


into the system as inputs by way of metadata in the form of BitBake recipes. The build
system uses this metadata to fetch, configure, and compile the source code into binary
package feeds. These individual output packages are assembled inside a staging area before
the finished Linux image and SDK are generated, complete with a manifest that includes a
license for each package that's on board:

Figure 8.1 – OpenEmbedded architecture workflow



Here are the seven steps of Yocto's build system workflow, as shown in the 
preceding diagram:

1. Define layers for policy, machine, and software metadata.
2. Fetch sources from the source URI of a software project.
3. Extract the source code, apply any patches, and compile the software.
4. Install the build artifacts into a staging area for packaging.
5. Bundle the installed build artifacts into a package feed for the root filesystem.
6. Run QA checks on a binary package feed before submitting it.
7. Generate the finished Linux image and an SDK in parallel.

Except for the first and last steps, all of the steps in this workflow are performed on a per-
recipe basis. Code linting, sanitizing, and other forms of static analysis may occur before or
after compilation. Unit and integration tests can run directly on the build machine, on a
QEMU instance acting as a stand-in for the target SoC, or on the target itself. When a build
completes, the finished image can then be deployed to a group of dedicated devices for
further testing. As the gold standard for embedded Linux build systems, Yocto is a vital
component of the software CI/CD pipeline for many products.
The packages Yocto generates can be in either rpm, deb, or ipk format. In addition to the
main binary package, the build system attempts to generate all of the following packages
for a recipe by default:

dbg: Binary files, including debug symbols
static-dev: Header files and static libraries
dev: Header files and shared library symlinks
doc: Documentation, including man pages
locale: Language translation information

Packages that would contain no files are not generated unless the ALLOW_EMPTY 
variable is enabled. The set of packages to be generated by default is determined by the
PACKAGES variable. Both variables are defined in meta/classes/packagegroup.bbclass,
but their values can be overridden by package group recipes that inherit from that BitBake
class.
Building an SDK enables a whole other development workflow for manipulating individual
package recipes. In the Capturing changes with devtool section of the previous chapter, we
learned how to use devtool to add and modify SDK software packages so that we can
integrate them back into an image.

Metadata



Metadata is the input that goes into the build system. It controls what gets built and how.
Metadata is more than just recipes. BSPs, policies, patches, and other forms of
configuration files are also metadata. Which version of a package to build and where to pull
the source code from are certainly forms of metadata. A developer makes all these choices
by naming files, setting variables, and running commands. These configuration actions,
argument values, and their resulting artifacts are yet another form of metadata. Yocto parses
all of these inputs and transforms them into a complete Linux image.
The first choice a developer makes with respect to building with Yocto is what 
machine architecture to target. You do this by setting the MACHINE variable in the 
conf/local.conf file for your project. When targeting QEMU, I like to use 
MACHINE ?= "qemuarm64" to specify aarch64 as the machine architecture. 
Yocto ensures that the correct compiler flags propagate from a BSP down to the other build
layers.
Architecture-specific settings are defined in files called tunes, which are located in Yocto's
meta/conf/machine/include directory, and the individual BSP layers themselves. A
number of BSP layers are included with every Yocto release. We worked extensively with
the meta-raspberrypi BSP layer in the previous chapter. The source for each BSP resides
inside its own Git repository.
To clone Xilinx's BSP layer, which contains support for their Zynq family of SoCs, use the
following command:

$ git clone git://git.yoctoproject.org/meta-xilinx

This is just one example of the many BSP layers that accompany Yocto. You won't need
this layer for any of the subsequent exercises, so feel free to discard it.
Metadata needs source code to act upon. BitBake's do_fetch task can obtain recipe source
files in a number of different ways. Here are the two most prominent methods:

When someone else develops some software that you need, the easiest way to get it is
to tell BitBake to download a tarball release of the project.
To extend someone else's open source software, simply fork the repository on GitHub.
BitBake's do_fetch task can then use Git to clone the source files from a given
SRC_URI.

If your team is responsible for the software, then you can choose to embed it into your work
environment as a local project. You can do this either by nesting it as a subdirectory or
defining it out-of-tree using the externalsrc class. Embedding means that the sources are
tied to your layer repository and can't be easily used somewhere else. 
Out-of-tree projects that use externalsrc require identical paths on all building instances
and sabotage reproducibility. Both of these techniques are merely tools used to expedite
development. Neither should be used in production.
Policies are properties that are bundled together as a distribution layer. These include things
such as which features (systemd for example), C library implementation 
(glibc or musl) and package manager are required by a Linux distribution. Each distro
layer has its own conf/distro subdirectory. The .conf files inside that directory define the



top-level policies for a distribution or image. See the meta-poky subdirectory for an
example of a distro layer. This Poky reference distribution layer includes .conf files for
building default, tiny, bleeding edge, and alternative flavors of Poky for your target device.
We covered this in the previous chapter, in the Building your own distro section.

Build tasks
We already saw how BitBake's do_fetch task downloads and extracts the source for a
recipe. The next steps in the build process are patching, configuring, and compiling said
source code: do_patch, do_configure, and do_compile.
The do_patch task uses the FILESPATH variable and a recipe's SRC_URI variable to locate
patch files and apply them to the intended source code. The FILESPATH variable, found in
meta/classes/base.bbclass, defines the default set of directories 
that the build system uses to search for patch files (Yocto Project Reference Manual, 
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#ref-tasks-patch). By
convention, patch files have names ending in .diff and .patch and reside in a subdirectory
below where the corresponding recipe file is located. This default behavior can be extended
and overridden by defining a FILESEXTRAPATHS variable and appending file pathnames to
the 
recipe's SRC_URI variable. After patching the source code, the do_configure and 
do_compile tasks configure, compile, and link it:

https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#ref-tasks-patch


Figure 8.2 – Package feeds

When do_compile is done, the do_install task copies the resulting files to a 
staging area where they are readied for packaging. There, the do_package and 
do_package_data tasks work in tandem to process the build artifacts in the staging area and
divide them up into packages. Before they are submitted to the package feeds area, the



do_package_qa task subjects package artifacts to a battery of QA checks. These
autogenerated QA checks are defined in meta/classes/insane.bbclass. Lastly, the
do_package_write_* tasks create the individual packages and send them to the package
feeds area. Once the package feeds area has been populated, BitBake is ready for image and
SDK generation.

Image generation
Generating an image is a multi-stage process that relies on several variables to perform a
series of tasks. The do_rootfs task creates the root filesystem for an image. These variables
determine what packages get installed onto the image:

IMAGE_INSTALL: Packages to install onto the image
PACKAGE_EXCLUDE: Packages to omit from the image
IMAGE_FEATURES: Additional packages to install onto the image
PACKAGE_CLASSES: Package format (rpm, deb, or ipk) to use
IMAGE_LINGUAS: Languages (cultures) to include support packages for

Recall that we added packages to the IMAGE_INSTALL variable back in Chapter 6, Selecting
a Build System, as part of the Writing an image recipe section. The list of packages from the
IMAGE_INSTALL variable is passed to a package manager (dnf, apt, or opkg) so that they can
be installed on the image. Which package manager gets invoked depends on the format of
the package feeds: do_package_write_rpm, do_package_write_deb, or
do_package_write_ipk. Package installation happens regardless of whether a runtime
package manager is included on the target. If there is no package manager onboard, then
inessential files get deleted from the image at the end of this package installation phase for
hygiene purposes and to save space.
Once package installation is complete, the package's post-installation scripts are run. These
post-installation scripts come included with the packages. If all the post-installation scripts
run successfully, a manifest is written to and optimizations are performed on the root
filesystem image. This top-level .manifest file lists all the packages that have been
installed on the image. The default library size and executable startup time optimizations
are defined by the ROOTFS_POSTPROCESS_COMMAND variable.
Now that the root filesystem has been fully populated, the do_image task can begin image
processing. First, all the pre-processing commands defined by the
IMAGE_PREPROCESS_COMMAND variable get executed. Next, the process creates the final
image output files. It does this by launching a do_image_* task for every image type (for
example, cpio.lz4, ext4, and squashfs-lzo) specified in the IMAGE_FSTYPES variable. The
build system then takes the contents of the IMAGE_ROOTFS directory and converts it into one
or more image files. These output image files are compressed when the specified filesystem
format allows for it. Lastly, the do_image_complete task finishes the image by executing
every post-processing command defined by the IMAGE_POSTPROCESS_COMMAND variable.



Now that we have traced through Yocto's entire build workflow end-to-end, let's look at
some best practices for structuring large projects.

Separating metadata into layers
Yocto metadata is organized around the following concepts:

distro: OS features, including choice of C library, init system, and 
window manager
machine: CPU architecture, kernel, drivers, and bootloader
recipe: Application binaries and/or scripts
image: Development, manufacturing, or production

These concepts map directly to actual byproducts of the build system, thus offering us
guidance when designing our projects. We could rush to assemble everything inside a single
layer, but that would likely result in a project that is inflexible and unmaintainable.
Hardware inevitably gets revised, and one successful consumer device quickly multiplies
into a series of products. For these reasons, it is better to adopt a multi-layered approach
early on so that we end up with software components that we can easily modify, swap out,
and reuse.
At a minimum, you should create individual distribution, BSP, and application layers for
every major project that you start with Yocto. The distribution layer builds the target OS
(Linux distro) that your application(s) will run on. Frame buffer and window manager
configuration files belong in the distribution layer. The BSP layer specifies the bootloader,
kernel, and device tree needed for the hardware to operate. The application layer contains
the recipes needed to build all the packages that comprise your custom application(s).
We first encountered the MACHINE variable back in Chapter 6, Selecting a Build System,
when we performed our first builds with Yocto. We looked at the DISTRO variable 
toward the end of the previous chapter, when we created our own distribution layer. 
The other Yocto exercises in this book rely on meta-poky for their distro layer. Layers are
added to your build by inserting them into the BBLAYERS variable within the 
conf/bblayers.conf file in your active build directory. Here is an example of Poky's
default BBLAYERS definition:

BBLAYERS ?= " \

  /home/frank/poky/meta \

  /home/frank/poky/meta-poky \

  /home/frank/poky/meta-yocto-bsp \

  "

Rather than edit bblayers.conf directly, use the bitbake-layers command-line tool to
work with project layers. Resist the temptation to modify the Poky source tree directly.
Always create your own layer (for example, meta-mine) above Poky and make your
changes there. Here is what the BBLAYERS variable should look like within the



conf/bblayers.conf file in your active build directory (for example, build-mine) during
development:

BBLAYERS ?= " \

  /home/frank/poky/meta \

  /home/frank/poky/meta-poky \

  /home/frank/poky/meta-yocto-bsp \

  /home/frank/meta-mine \

  /home/frank/build-mine/workspace \

  "

workspace is a special temporary layer we encountered in the previous chapter when we
experimented with devtool. Every BitBake layer has the same basic directory structure,
regardless of what type of layer it is. Layer directory names typically start with the meta-
prefix by convention. Take the following dummy layer, for example:

$ tree meta-example

meta-example

├── classes

│   ├── class-a.bbclass

│   ├── ...

│   └── class-z.bbclass

├── conf

│   └── layer.conf

├── COPYING.MIT

├── README

├── recipes-a

│   ├── package-a

│   │   └── package-a_0.1.bb

│   ├── ...

│   └── package-z

│       └── package-z_0.1.bb

├── recipes-b

│   └── ...

└── recipes-c

    └── ...

Every layer must have a conf directory with a layer.conf file so that BitBake can set up
paths and search patterns for metadata files. We looked closely at the contents of
layer.conf back in Chapter 6, Selecting a Build System, when we created a meta-nova
layer for our Nova board. BSP and distribution layers may also have a machine or distro
subdirectory under the conf directory with more .conf files. We examined the structure of
the machine and distro layers in the previous chapter, when we built on top of the meta-
raspberrypi layer and created our own meta-mackerel distro layer.
The classes subdirectory is only needed for layers that define their own BitBake classes.
Recipes are organized by category, such as connectivity, so recipes-a is actually a
placeholder for recipes-connectivity and so on. A category can contain one or more



packages, each with its own set of BitBake recipe files (.bb). The recipe files are versioned
by package release number. Again, names such as package-a and package-z are merely
placeholders for real packages.
It's very easy to get lost in all these different layers. Even as you become more proficient
with Yocto, there will be many times when you will find yourself asking how a particular
file ended up on your image. Or, more likely, where are the recipe files you need to modify
or extend to do what you need to do? Luckily, Yocto provides some command-line tools to
help you answer these questions. I recommend that you explore recipetool, oe-pkgdata-
util, and oe-pkgdata-browser and familiarize yourself with them. You could save
yourself lots of hours.

Troubleshooting build failures
In the two preceding chapters, we learned how to build bootable images for QEMU, our
Nova board, and the Raspberry Pi 4. But what happens when things go wrong? In this
section, we will cover a number of useful debugging techniques that should make the
prospect of wrangling Yocto build failures less intimidating.
To execute the commands in the subsequent exercises, you need to activate a BitBake
environment, as follows:

1. First, navigate one level above the directory where you cloned Yocto.
2. Next, set up your BitBake work environment:

$ source poky/oe-init-build-env build-rpi

This sets a bunch of environment variables and puts you back in the build-rpi directory
that we created in the previous chapter.

Isolating errors
So, your build failed, but where did it fail? You have an error message, but what does it
mean and where did it come from? Do not despair. The first step in debugging is
reproducing the bug. Once you can reproduce the bug, you can narrow the problem down to
a series of known steps. Retracing those steps is how you spot the malfunction:

1. First, look at the BitBake build error message and see if you recognize any package or
task names. If you're not sure what packages are in your workspace, you can use the
following command to get a list of them:

$ bitbake-layers show-recipes

2. Once you have identified which package failed to build, then search your current
layers for any recipe or appends files related to that package, like so:

$ find ../poky -name "*connman*.bb*"



The package to search for is connman in this instance. The ../poky argument
in the preceding find command assumes your build directory is adjacent to
poky, like build-pi from the previous chapter.

3. Next, list all the tasks available for the connman recipe:
$ bitbake -c listtasks connman

4. To reproduce the error, you can rebuild connman, as follows:
$ bitbake -c clean connman && bitbake connman

Now that you know the recipe and task where your build failed, you are ready to move on
to the next stage of debugging.

Dumping the environment
While you are debugging a build failure, you are going to want to see the current values of
the variables within BitBake's environment. Let's start from the top and work our way
down:

1. First, dump the global environment and search for the value of DISTRO_FEATURES:
$ bitbake -e | less

Enter /DISTRO_FEATURES= (note the leading forward slash); less should
jump to a line that looks kind of like this:
DISTRO_FEATURES="acl alsa argp bluetooth ext2 ipv4 ipv6
largefile pcmcia usbgadget usbhost wifi xattr nfs zeroconf pci
3g nfc x11 vfat largefile opengl ptest multiarch wayland vulkan
pulseaudio sysvinit gobject-introspection-data ldconfig"

2. To dump busybox's package environment and locate its source directory, use the
following command:

$ bitbake -e busybox | grep ^S=

3. To dump connman's package environment and locate its working directory, use the
following command:

$ bitbake -e connman | grep ^WORKDIR=

A package's working directory is where its recipe task logs are saved during 
BitBake builds.

In Step 1, we could have piped the output from bitbake -e into grep, but less allows us to
trace the evaluation of the variable more easily. Enter /DISTRO_FEATURES without the
trailing equal sign in less to search for more occurrences of the variable. Hit n to jump
forward to the next occurrence and N to jump back to the previous occurrence.
The same commands work for image as well as package recipes:

$ bitbake -e core-image-minimal | grep ^S=

In this case, the target environment to dump belongs to core-image-minimal.
Now that you know where the source and task log files are, let's look at some task logs.



Reading the task log
BitBake creates a log file for every shell task and saves it to a temp folder in the package's
working directory. In the case of connman, the path to that temp folder looks sort of 
like this:

$ ./tmp/work/aarch64-poky-linux/connman/1.37-r0/temp

The format of the log filenames is log.do_<task>.<pid>. There are also symlinks with no
<pid> at the end of their names, which point to the latest log files for each task. The log
files contain the output of the task run, which in most cases is all the information you need
to debug the problem. If not, guess what you can do?

Adding more logging
Logging from Python is different from logging from Shell in BitBake. To log from Python,
you can use BitBake's bb module, which calls out to Python's standard logger module, as
shown here:

bb.plain -> none; Output: logs console

bb.note -> logger.info; Output: logs

bb.warn -> logger.warning; Output: logs console

bb.error -> logger.error; Output: logs console

bb.fatal -> logger.critical; Output: logs console

bb.debug -> logger.debug; Output: logs console

To log from shell, you can use BitBake's logging class, whose source can be found at
meta/classes/logging.bbclass. All recipes that inherit base.bbclass automatically
inherit logging.bbclass. This means that all of the following logging functions should
already be available to you from most shell recipe files:

bbplain -> Prints exactly what is passed in. Use sparingly.

bbnote -> Prints noteworthy conditions with the NOTE prefix.

bbwarn -> Prints a non-fatal warning with the WARNING prefix.

bberror -> Prints a non-fatal error with the ERROR prefix.

bbfatal -> Prints a fatal error and halts the build.

bbdebug -> Prints debug messages depending on log level.

According to the logging.bbclass source, the bbdebug function takes an integer debug log
level as its first argument:

# Usage: bbdebug 1 "first level debug message"

#        bbdebug 2 "second level debug message

bbdebug () {

    USAGE = 'Usage: bbdebug [123] "message"'

    …

}

Depending on the debug log level, a bbdebug message may or may not go to the console.



Running commands from devshell
BitBake provides a development shell so that you can run build commands manually in a
more interactive environment. To get into a devshell for building connman, use the
following command:

$ bitbake -c devshell connman

First, this command extracts and patches the source code for connman. Next, it opens a new
Terminal in connman's source directory with the environment correctly set up for building.
Once inside a devshell, you can run commands such as ./configure and make or invoke
the cross-compiler directly using $CC. devshell is perfect for experimenting with values
such as CFLAGS or LDFLAGS, which get passed to tools such as CMake and Autotools as
command-line arguments or environment variables. At the very least, you can increase the
verbosity level of build commands if the error messages you are reading aren't meaningful.

Graphing dependencies
Sometimes, the cause of the build error cannot be located inside the package recipe files
because the error actually occurred when building one of the package's dependencies. To
get a list of dependencies for the connman package, use the following command:

$ bitbake -v connman

We can use BitBake's built-in task explorer to display and navigate dependencies:
$ bitbake -g connman -u taskexp

The preceding command launches the task explorer's graphical UI after analyzing connman:

IMPORTANT NOTE
Some larger images, such as core-image-x11, have complex package dependency trees that
will likely crash the task explorer.



Figure 8.3 – Task explorer

Now, let's move away from the topic of builds and build failures and immerse ourselves in
the raw materials of the Yocto Project; that is, BitBake metadata.



Understanding BitBake syntax and semantics
BitBake is a task runner. It is similar to GNU make in that respect, except that it operates on
recipes instead of makefiles. The metadata in these recipes defines tasks in shell and
Python. BitBake itself is written in Python. The OpenEmbedded project that Yocto is based
on consists of BitBake and a large collection of recipes for building embedded Linux
distributions. BitBake's power lies in its ability to run tasks in parallel while still satisfying
inter-task dependencies. Its layered and inheritance-based approach to metadata enables
Yocto to scale in ways Buildroot-based build systems simply cannot.
In Chapter 6, Selecting a Build System, we learned about the five types of BitBake
metadata files; that is, .bb, .bbappend, .inc, .bbclass, and .conf. We also wrote BitBake
recipes for building a basic helloworld program and nova-image image. Now, we will look
more closely at the contents of BitBake metadata files. We know that tasks are written in a
mix of shell and Python, but what goes where and why? What language constructs are
available to us, and what can we do with them? How do we compose metadata to build our
applications? Before you can harness the full power of Yocto, you need to learn to read and
write BitBake.

Tasks
Tasks are functions that BitBake needs to run in sequence to execute a recipe. Recall that
task names start with the do_ prefix. Here is a task from recipes-core/systemd:

do_deploy () {

    install ${B}/src/boot/efi/systemd-boot*.efi ${DEPLOYDIR}

}

addtask deploy before do_build after do_compile

In this example, a function named do_deploy is defined and immediately elevated to a task
using the addtask command. The addtask command also specifies inter-task dependencies.
For instance, this do_deploy task depends on the do_compile task completing, while the
do_build task depends on the do_deploy task completing. The dependencies expressed by
addtask can only be internal to the recipe file.
Tasks can also be deleted using the deltask command. This stops BitBake from executing
the task as part of the recipe. To delete the preceding do_deploy task, use the following
command:

deltask do_deploy

This deletes the task from the recipe, but the original do_deploy function definition remains
and can still be called.

Dependencies



To ensure efficient parallel processing, BitBake handles dependencies at the task level. 
We saw just how addtask can be used to express dependencies between tasks within a
single recipe file. Dependencies between tasks in different recipes also exist. In fact, these
inter-task dependencies are what we usually think of when we consider build-time and
runtime dependencies between packages.
Inter-task dependencies
Variable flags (varflags) are a means of attaching properties or attributes to variables. They
behave like keys in a hash map in the sense that they let you set keys to values and retrieve
values by their keys. BitBake defines a large set of varflags for use in recipes and classes.
These varflags indicate what the components and dependencies of a task are. Here are some
examples of varflags:

do_patch[postfuncs] += "copy_sources"

do_package_index[depends] += "signing-keys:do_deploy"

do_rootfs[recrdeptask] += "do_package_write_deb do_package_qa"

The value that's assigned to a varflag's key is often one or more other tasks. This means that
BitBake varflags offer us another way to expresses inter-task dependencies, different from
addtask. Most embedded Linux developers will probably never need to touch varflags in
their day-to-day work. I introduce them here so that we can make sense of the following
DEPENDS and RDEPENDS examples.
Build-time dependencies
BitBake uses the DEPENDS variable to manage build-time dependencies. The deptask
varflag for a task signifies the task that must complete for each item in DEPENDS before that
task can be executed (BitBake User Manual,
https://www.yoctoproject.org/docs/current/bitbake-user-manual/bitbake-user-
manual.html#build-dependencies):

do_package[deptask] += "do_packagedata"

In this example, the do_packagedata task of each item in DEPENDS must complete before
do_package can execute.
Alternatively, you can bypass the DEPENDS variable and define your build-time
dependencies explicitly using the depends flag:

do_patch[depends] += "quilt-native:do_populate_sysroot"

In this example, the do_populate_sysroot task belonging to the quilt-native namespace
must complete before do_patch can execute. A recipe's tasks are often grouped together
inside their own namespace to enable this sort of direct access.
Runtime dependencies
BitBake uses the PACKAGES and RDEPENDS variables to manage runtime dependencies. The
PACKAGES variable lists all the runtime packages a recipe creates. Each of those packages
can have RDEPENDS runtime dependencies. These are packages that must be installed for a
given package to run. The rdeptask varflag for a task specifies which tasks must be
completed for every runtime dependency before that task can be executed (BitBake User

https://www.yoctoproject.org/docs/current/bitbake-user-manual/bitbake-user-manual.html#build-dependencies


Manual, https://www.yoctoproject.org/docs/current/bitbake-user-manual/bitbake-user-
manual.html#runtime-dependencies):

do_package_qa[rdeptask] = "do_packagedata"

In this example, the do_package_data task of each item in RDEPENDS must complete before
do_package_qa can execute.
Similarly, the rdepends flag works much like the depends flag by allowing you to bypass
the RDEPENDS variable. The only difference is that rdepends is enforced at runtime instead
of build-time.

Variables
BitBake variable syntax resembles the make variable syntax. The scope of a variable in
BitBake depends on the type of metadata file where a variable was defined. Every variable
declared in a recipe file (.bb) is local. Every variable declared in a configuration file
(.conf) is global. An image is just a recipe, so an image cannot affect what happens in
another recipe.
Assignment and expansion
Variable assignment and expansion work like they do in shell. By default, assignment
occurs as soon as the statement is parsed and is unconditional. The $ character triggers
variable expansion. Enclosing braces are optional and serve to protect the variable to be
expanded from characters immediately following it. Expanded variables are usually
wrapped in double quotes to avoid accidental word splitting and globbing:

OLDPKGNAME = "dbus-x11"

PROVIDES_${PN} = "${OLDPKGNAME}"

Variables are mutable and normally evaluated at the time of reference, not assignment, like
in make. This means that if a variable is referenced on the right-hand side of an assignment,
then that referenced variable is not evaluated until the variable on the 
left-hand side is expanded. So, if a value on the right-hand side changes over time, then 
so does the value of the variable on the left-hand side.
Conditional assignment only defines a variable if it is undefined at the time of parsing. This
prevents reassignment when you don't want that behavior:

PREFERRED_PROVIDER_virtual/kernel ?= "linux-yocto"

Conditional assignment is employed at the top of makefiles to prevent variables that may
have already been set by the build system (for example, CC, CFLAGS, and LDFLAGS) from
being overwritten. Conditional assignment ensures that we don't append or prepend to an
undefined variable later on in a recipe.
Lazy assignment using ??= behaves identically to ?=, except that the assignment is made at
the end of the parsing process rather than immediately (BitBake User Manual,
https://www.yoctoproject.org/docs/current/bitbake-user-manual/bitbake-user-
manual.html#setting-a-weak-default-value):

TOOLCHAIN_TEST_HOST ??= "localhost"

https://www.yoctoproject.org/docs/current/bitbake-user-manual/bitbake-user-manual.html#runtime-dependencies
https://www.yoctoproject.org/docs/current/bitbake-user-manual/bitbake-user-manual.html#setting-a-weak-default-value


What that means is that if a variable name is on the left-hand side of multiple lazy
assignments, then the last lazy assignment statement wins.
Another form of variable assignment forces the right-hand side of the assignment to be
evaluated immediately at the time of parsing:

target_datadir := "${datadir}"

Note that the := operator for immediate assignment comes from make, not shell.
Appending and prepending
Appending or prepending to variable or variable flags in BitBake is easy. The following
two operators insert a single space in-between the value on the left-hand side and the value
being appended or prepended from the right-hand side:

CXXFLAGS += "-std=c++11"

PACKAGES =+ "gdbserver"

Note that the += operator means increment, not append, when applied to integer as opposed
to string values.
If you wish to omit the single space, there are assignment operators that do that as well:

BBPATH .= ":${LAYERDIR}"

FILESEXTRAPATHS =. "${FILE_DIRNAME}/systemd:"

The single space versions of the appending and prepending assignment operators are used
throughout BitBake metadata files.
Overrides
BitBake offers an alternative syntax for appending and prepending to variables. This style
of concatenating is known as override syntax:

CFLAGS_append = " -DSQLITE_ENABLE_COLUMN_METADATA"

PROVIDES_prepend = "${PN} "

While it may not be obvious at first glance, the two preceding lines are not defining new
variables. The _append and _prepend suffixes modify or override the values of existing
variables. They function more like BitBake's .= and =. than the += and =+ operators in the
sense that they omit the single space when combining strings. Unlike those operators,
overrides are lazy, so assignment does not take place until all parsing completes.
Finally, let's look at a more advanced form of conditional assignment involving the
OVERRIDES variable defined in meta/conf/bitbake.conf. The OVERRIDES variable is a
colon-separated list of conditions that you want satisfied. This list is used to select between
multiple versions of the same variable, each of which is distinguished by a different suffix.
The various suffixes match the names of the conditions. Let's say the OVERRIDES list
contains ${TRANSLATED_TARGET_ARCH} as a condition. Now, you can define a version of a
variable that is conditional on a target CPU architecture of aarch64, such as the
VALGRINDARCH_aarch64 variable:

VALGRINDARCH ?= "${TARGET_ARCH}"

VALGRINDARCH_aarch64 = "arm64"

VALGRINDARCH_x86-64 = "amd64"



When the TRANSLATED_TARGET_ARCH variable expands to aarch64, the
VALGRINDARCH_aarch64 version of the VALGRINDARCH variable is selected over all the other
overrides. Selecting variable values based on OVERRIDES is cleaner and less brittle than
other methods of conditional assignment, such as #ifdef directives in C.
BitBake also supports appending and prepending operations to variable values based on
whether a specific item is listed in OVERRIDES (BitBake User Manual,
https://www.yoctoproject.org/docs/current/bitbake-user-manual/bitbake-user-
manual.html#conditional-metadata). Here are various real-world examples:

EXTRA_OEMAKE_prepend_task-compile = "${PARALLEL_MAKE} "

EXTRA_OEMAKE_prepend_task-install = "${PARALLEL_MAKEINST} "

DEPENDS = "attr libaio libcap acl openssl zip-native"

DEPENDS_append_libc-musl = " fts "

EXTRA_OECONF_append_libc-musl = " LIBS=-lfts "

EXTRA_OEMAKE_append_libc-musl = " LIBC=musl "

Notice how libc-musl is a condition for appending string values to the DEPENDS,
EXTRA_OECONF, and EXTRA_OEMAKE variables. Like the earlier unconditional override syntax
for appending and prepending to variables, this conditional syntax is also lazy. Assignment
does not occur until after the recipes and configuration files have been parsed.
Conditionally appending and prepending to variables based on the contents of OVERRIDES is
complicated and can result in unwanted surprises. I recommend getting lots of practice with
conditional assignment based on OVERRIDES before adopting these even more advanced
BitBake features.
Inline Python
The @ symbol in BitBake lets us inject and execute Python code inside variables. An 
inline Python expression gets evaluated each time the variable on the left-hand side 
of the = operator is expanded. An inline Python expression on the right-hand side of 
the := operator is evaluated only once at parse-time. Here are some examples of inline
Python variable expansion:

PV = "${@bb.parse.vars_from_file(d.getVar('FILE', False),d)[1] or
'1.0'}"

BOOST_MAJ = "${@"_".join(d.getVar("PV").split(".")[0:2])}"

GO_PARALLEL_BUILD ?= "${@oe.utils.parallel_make_argument(d, '-p %d')}"

Notice that bb and oe are aliases for BitBake and OpenEmbedded's Python modules. Also,
notice that d.getVar("PV") is used to retrieve the value of the PV variable from the task's
runtime environment. The d variable refers to a datastore object that BitBake saves a copy
of the original execution environment to. This is largely how BitBake shell and Python
code interoperate with one another.

Functions

https://www.yoctoproject.org/docs/current/bitbake-user-manual/bitbake-user-manual.html#conditional-metadata


Functions are the stuff that BitBake tasks are made of. They are written in either shell or
Python and defined inside the .bbclass, .bb, and .inc files.
Shell
Functions written in shell are executed as functions or tasks. Functions that run as tasks
usually have names that start with the do_ prefix. Here is what a function looks like in shell:

meson_do_install() {

    DESTDIR='${D}' ninja -v ${PARALLEL_MAKEINST} install

}

Remember to remain shell-agnostic when writing your functions. BitBake executes shell
snippets with /bin/sh, which may or may not be a Bash shell, depending on the host distro.
Avoid bashisms by running the scripts/verify-bashisms linter against your shell scripts.
Python
BitBake understands three types of Python functions: pure, BitBake style, and anonymous.

Pure Python functions
A pure Python function is written in regular Python and called by other Python code. By
pure, I mean that the function lives exclusively within the realm of the Python interpreter's
execution environment, not pure in the functional programming sense. Here is an example
from meta/recipes-connectivity/bluez5/bluez5.inc:

def get_noinst_tools_paths (d, bb, tools):

    s = list()

    bindir = d.getVar("bindir")

    for bdp in tools.split():

        f = os.path.basename(bdp)

        s.append("%s/%s" % (bindir, f))

    return "\n".join(s)

Notice that this function takes parameters just like a real Python function. There are a
couple more noteworthy things I would also like to point out about this function. First, the
datastore object is unavailable, so you need to pass it in as a function parameter (the d
variable, in this instance). Second, the os module is automatically available, so there is no
need to import or pass it in.
Pure Python functions can be called by inline Python assigned to shell variables using the @
symbol. In fact, that is precisely what happens on the next line of this include file:

FILES_${PN}-noinst-tools = \

"${@get_noinst_tools_paths(d, bb, d.getVar('NOINST_TOOLS'))}"

Notice that both the d datastore object and the bb module are automatically available inside
the inline Python scope after the @ symbol.

BitBake style Python functions



A BitBake style Python function definition is denoted by the python keyword instead of
Python's native def keyword. These functions are executed by invoking
bb.build.exec_func() from other Python functions, including BitBake's own internal
ones. Unlike pure Python functions, BitBake style functions do not take parameters. The
absence of parameters isn't much of a problem since the datastore object is always available
as a global variable; that is, d. While not as Pythonic, the BitBake style of defining
functions is predominant throughout Yocto. Here is a BitBake style Python function
definition from meta/classes/sign_rpm.bbclass:

python sign_rpm () {

    import glob

    from oe.gpg_sign import get_signer

    signer = get_signer(d, d.getVar('RPM_GPG_BACKEND'))

    rpms = glob.glob(d.getVar('RPM_PKGWRITEDIR') + '/*')

    signer.sign_rpms(rpms,

                     d.getVar('RPM_GPG_NAME'),

                     d.getVar('RPM_GPG_PASSPHRASE'),

                     d.getVar('RPM_FILE_CHECKSUM_DIGEST'),

                     int(d.getVar('RPM_GPG_SIGN_CHUNK')),

                     d.getVar('RPM_FSK_PATH'),

                     d.getVar('RPM_FSK_PASSWORD'))

}

Anonymous Python functions
An anonymous Python function looks much like a BitBake style Python function, but it
executes during parsing. Because they run first, anonymous functions are good for
operations that can be done at parse-time, such as initializing variables and other forms of
setup. Anonymous function definitions can be written with or without the __anonymous
function name:

python __anonymous () {

    systemd_packages = "${PN} ${PN}-wait-online"

    pkgconfig = d.getVar('PACKAGECONFIG')

    if ('openvpn' or 'vpnc' or 'l2tp' or 'pptp') in pkgconfig.split():

        systemd_packages += " ${PN}-vpn"

    d.setVar('SYSTEMD_PACKAGES', systemd_packages)

}

python () {

    packages = d.getVar('PACKAGES').split()

    if d.getVar('PACKAGEGROUP_DISABLE_COMPLEMENTARY') != '1':

        types = ['', '-dbg', '-dev']

        if bb.utils.contains('DISTRO_FEATURES', 'ptest', True, False,
d):

            types.append('-ptest')

        packages = [pkg + suffix for pkg in packages



                    for suffix in types]

        d.setVar('PACKAGES', ' '.join(packages))

    for pkg in packages:

        d.setVar('ALLOW_EMPTY_%s' % pkg, '1')

}

The d variable within an anonymous Python function represents the datastore for the entire
recipe (BitBake User Manual, https://www.yoctoproject.org/docs/current/bitbake-user-
manual/bitbake-user-manual.html#anonymous-python-functions). So, when you set a
variable inside an anonymous function scope, that value will be available to other functions
by way of the global datastore object when they run.

RDEPENDS revisited
Let's return to the subject of runtime dependencies. These are packages that must be
installed for a given package to run. This list is defined in the package's RDEPENDS variable.
Here is an interesting excerpt from populate_sdk_base.bbclass:

do_sdk_depends[rdepends] = "${@get_sdk_ext_rdepends(d)}"

And here is the definition of the corresponding inline Python function:
def get_sdk_ext_rdepends(d):

    localdata = d.createCopy()

    localdata.appendVar('OVERRIDES', ':task-populate-sdk-ext')

    return localdata.getVarFlag('do_populate_sdk', 'rdepends')

There is quite a bit to unpack here. First, the function makes a copy of the datastore object
so as not to modify the task runtime environment. Recall, that the OVERRIDES variable is a
list of conditions used to select between multiple versions of a variable. The next line adds
a condition of task-populate-sdk-ext to the OVERRIDES list in the local copy of the
datastore. Lastly, the function returns the value of the rdepends varflag for the
do_populate_sdk task. The difference now is that rdepends is evaluated using the _task-
populate-sdk-ext versions of variables, such as the following:

SDK_EXT_task-populate-sdk-ext = "-ext"

SDK_DIR_task-populate-sdk-ext = "${WORKDIR}/sdk-ext"

I find this use of temporary OVERRIDES to be both clever and terrifying.
BitBake syntax and semantics can seem daunting. Combining shell and Python makes for
an interesting mix of language features. Not only do we now know how to define variables
and functions, but we can now also inherit from class files, override variables, and change
conditions programmatically. These advanced concepts appear again and again in the .bb,
.bbappend, .inc, .bbclass, and .conf files and will become increasingly recognizable
over time. As we strive to achieve proficiency in BitBake and begin to stretch our
newfound abilities, mistakes are bound to occur.

https://www.yoctoproject.org/docs/current/bitbake-user-manual/bitbake-user-manual.html#anonymous-python-functions


Summary
Even though you can build just about anything with Yocto, it's not always easy to tell what
the build system is doing or how. There is hope for us, though. There are command-line
tools to help us find where something came from and how to change it. There are task logs
we can read from and write to. There is also devshell, which we can use to configure and
compile individual things from the command line. And if we divide our projects into
multiple layers from the outset, we are likely to get much more mileage out of the work 
we do.
BitBake's mix of shell and Python supports some powerful language constructs, such as
inheritance, overrides, and conditional variable selection. That's both good and bad. It's
good in the sense that layers and recipes are completely composable and customizable. It's
bad in the sense that metadata in different recipe files and different layers can interact in
strange and unexpected ways. Combine those powerful language features with the datastore
object's ability to act as a portal between the shell and Python execution environments, and
you have a recipe for countless hours of fun.
This concludes our in-depth exploration of the Yocto Project and the first section of this
book on the Elements of Embedded Linux. In the next section of this book, we switch gears
and examine System Architecture and Design Decisions, beginning with Chapter 9,
Creating a Storage Strategy. We will get a chance to use Yocto again in Chapter 10,
Updating Software in the Field, when we evaluate Mender.

Further reading
The following resources contain more information about the topics that were introduced in
this chapter:

Yocto Projects Overview and Concepts Manual, by Scott Rifenbark:
https://www.yoctoproject.org/docs/latest/overview-manual/overview-manual.html
What I Wish I'd Known, Yocto Project: https://www.yoctoproject.org/docs/what-i-
wish-id-known
BitBake User Manual, by Richard Purdie, Chris Larson, and Phil Blundell:
https://www.yoctoproject.org/docs/latest/bitbake-user-manual/bitbake-user-
manual.html
Embedded Linux Projects Using Yocto Project Cookbook, by Alex Gonzalez

https://www.yoctoproject.org/docs/latest/overview-manual/overview-manual.html
https://www.yoctoproject.org/docs/what-i-wish-id-known
https://www.yoctoproject.org/docs/latest/bitbake-user-manual/bitbake-user-manual.html


Section 2: 
System Architecture and Design Decisions
By the end of Section 2, we will be able to make informed decisions concerning the storage
of programs and data, how to divide work between kernel device drivers and applications,
and how to initialize the system.
This part of the book comprises the following chapters:

Chapter 9, Creating a Storage Strategy
Chapter 10, Updating Software in the Field
Chapter 11, Interfacing with Device Drivers
Chapter 12, Prototyping with Breakout Boards
Chapter 13, Starting Up – The init Program
Chapter 14, Starting with BusyBox runit
Chapter 15, Managing Power



Chapter 9: Creating a Storage Strategy
The mass storage options for embedded devices have a great impact on the rest of the
system in terms of the robustness, speed, and methods used for in-field updates. Most
devices employ flash memory in some form or another. Flash memory has become much
less expensive over the past few years as storage capacities have increased from tens of
megabytes to tens of gigabytes.
In this chapter, we will begin with a detailed look at the technology behind flash memory,
as well as how different memory organization strategies affect the low-level driver software
that has to manage it, including the Linux memory technology device (MTD) layer.
For each flash technology, there are different choices when it comes to the filesystem. I will
describe those most commonly found on embedded devices and complete the survey by
providing a summary of choices for each type of flash memory. Finally, we will consider
some techniques that make the best use of flash memory and draw everything together into
a coherent storage strategy.
In this chapter, we will cover the following topics:

Storage options
Accessing flash memory from the bootloader
Accessing flash memory from Linux
Filesystems for flash memory
Filesystems for NOR and NAND flash memory
Filesystems for managed flash
Read-only compressed filesystems
Temporary filesystems
Making the root filesystem read-only
Filesystem choices

Let's get started!

Technical requirements
To follow along with the examples in this chapter, make sure you have the following:

A Linux-based host system with e2fsprogs, genext2fs, mtd-utils, squashfs-tools,
and util-linux or their equivalents installed
The U-Boot source tree from Chapter 3, All About Bootloaders
A microSD card reader and card



A USB to TTL 3.3V serial cable
The Linux kernel source tree from Chapter 4, Configuring and Building the Kernel
BeagleBone Black
A 5V 1A DC power supply

You should have already downloaded and built U-Boot for the BeagleBone Black back in
Chapter 3, All About Bootloaders. You should have obtained the Linux kernel source tree
from Chapter 4, Configuring and Building the Kernel.
Ubuntu provides packages for most of the tools needed to create and format various
filesystems. To install the tools on an Ubuntu 20.04 LTS system, use the following
command:

$ sudo apt install e2fsprogs genext2fs mtd-utils squashfs-tools util-
linux

The mtd-utils package includes mtdinfo, mkfs.jffs2, sumtool, nandwrite, and the UBI
command-line tools.

Storage options
Embedded devices need storage that takes little power and is physically compact, robust,
and reliable over a lifetime of perhaps tens of years. In almost all cases, this means solid-
state storage. Solid-state storage was introduced many years ago with read-only memory
(ROM), but for the past 20 years, it has been a flash memory of some kind. There have
been several generations of flash memory in that time, progressing from NOR to NAND to
managed flash such as eMMC.
NOR flash is expensive but reliable and can be mapped into the CPU address space, which
allows you to execute code directly from flash. NOR flash chips are low capacity, ranging
from a few megabytes to a gigabyte or so.
NAND flash memory is much cheaper than NOR and is available in higher capacities, in
the range of tens of megabytes to tens of gigabytes. However, it needs a lot of hardware and
software support to turn it into a useful storage medium.
Managed flash memory consists of one or more NAND flash chips, packaged with a
controller that handles the complexities of flash memory and presents a hardware interface
similar to that of a hard disk. The attraction is that it removes complexity from the driver
software and insulates the system designer from the frequent changes in flash technology.
SD cards, eMMC chips, and USB flash drives fit into this category. Almost all of the
current generations of smartphones and tablets have eMMC storage, and this trend is likely
to progress with other categories of embedded devices.
Hard drives are seldom found in embedded systems. One exception is digital video
recording in set-top boxes and smart TVs, in which a large amount of storage is needed
with fast write times.



In all cases, robustness is of prime importance: you want the device to boot and reach a
functional state, despite power failures and unexpected resets. You should choose
filesystems that behave well under such circumstances.
In this section, we will learn the difference between NOR and NAND flash and consider
our options when choosing a managed flash technology.

NOR flash
The memory cells in NOR flash chips are arranged into erase blocks of, for example, 128
KiB. Erasing a block sets all the bits to 1. It can be programmed one word at a time (8, 16,
or 32 bits, depending on the data bus width). Each erase cycle damages the memory cells
slightly, and after a number of cycles, the erase block becomes unreliable and cannot be
used anymore. The maximum number of erase cycles should be given in the data sheet for
the chip but is usually in the range of 100K to 1M.
The data can be read word by word. The chip is usually mapped into the CPU address
space, which means that you can execute code directly from NOR flash. This makes it a
convenient place to put the bootloader code as it needs no initialization beyond hardwiring
the address mapping. SoCs that support NOR flash in this way have configurations that
provide a default memory mapping so that it encompasses the reset vector of the CPU.
The kernel, and even the root filesystem, can also be located in flash memory, avoiding the
need for copying them into RAM, and thus creating devices with small memory footprints.
This technique is known as eXecute In Place, or XIP. It is very specialized, and I will not
examine it further here. I have included some references at the end of this chapter, in the
Further reading section.
There is a standard register-level interface for NOR flash chips called the Common Flash
Interface or CFI, which all modern chips support. The CFI is described in standard
JESD68, which you can get from https://www.jedec.org/.
Now that we have learned what NOR flash is, let's look at NAND flash.

NAND flash
NAND flash is much cheaper than NOR flash and has a higher capacity. First-generation
NAND chips stored one bit per memory cell in what is now known as a single-level cell
(SLC) organization. Later generations moved on to two bits per cell in multi-level cell
(MLC) chips and now to three bits per cell in tri-level cell (TLC) chips. As the number of
bits per cell increased, the reliability of the storage decreased, requiring more complex
controller hardware and software to compensate for this. Where reliability is a concern, you
should make sure you are using SLC NAND flash chips.
As with NOR flash, NAND flash is organized into erase blocks ranging in size from 16 KiB
to 512 KiB and, once again, erasing a block sets all the bits to 1. However, the number of

https://www.jedec.org/


erase cycles before the block becomes unreliable is lower, typically as few as 1K cycles for
TLC chips and up to 100K for SLC. NAND flash can only be read and written in pages,
usually of 2 or 4 KiB. Since they cannot be accessed byte by byte, they cannot be mapped
into the address space, so code and data have to be copied into RAM before they can 
be accessed.
Data transfers to and from the chip are prone to bit flips, which can be detected and
corrected using error-correction codes (ECCs). SLC chips generally use a simple
hamming code, which can be implemented efficiently in software and can correct a single-
bit error in a page read. MLC and TLC chips need more sophisticated codes, such as Bose-
Chaudhuri-Hocquenghem (BCH), which can correct up to 8-bit errors per page. These
need hardware support.
The ECCs have to be stored somewhere, and so there is an extra area of memory per page
known as the out-of-band (OOB) area, or the spare area. SLC designs usually have 1 byte
of OOB per 32 bytes of main storage, so for a 2 KiB page device, the OOB is 64 bytes per
page, and for a 4 KiB page, it is 128 bytes. MLC and TLC chips have proportionally larger
OOB areas, to accommodate for more complex ECCs. The following diagram shows the
organization of a chip with a 128 KiB erase block and 2 KiB pages:

Figure 9.1 – OOB area

During production, the manufacturer tests all the blocks and marks any that fail by setting a
flag in the OOB area of each page in the block. It is not uncommon to find that brand new
chips have up to 2% of their blocks marked bad in this way. Saving the OOB information
for analyzing before erasing the area can be useful when there is a problem. Furthermore, it
is within the specification for a similar proportion of blocks to give errors on erase before
the erase cycle limit is reached. The NAND flash driver should detect this and mark it as
bad.
Once space has been made in the OOB area for a bad block flag and ECC bytes, there are
still some bytes left. Some flash filesystems make use of these free bytes to store filesystem



metadata. Consequently, many parts of the system are interested in the layout of the OOB
area: the SoC ROM boot code, the bootloader, the kernel MTD driver, the filesystem code,
and the tools to create filesystem images. There is not much standardization, so it is easy to
get into a situation in which the bootloader writes data using an OOB format that cannot be
read by the kernel MTD driver. It is up to you to make sure that they all agree.
Access to NAND flash chips requires a NAND flash controller, which is usually part of the
SoC. You will need the corresponding driver in the bootloader and kernel. The NAND flash
controller handles the hardware interface for the chip, transferring data to and from pages,
and may include hardware for error correction.
There is a standard register-level interface for NAND flash chips known as the 
Open NAND Flash Interface or ONFI, which most modern chips adhere to. See
http://www.onfi.org/ for more information.
Modern NAND flash technology is complicated. Pairing NAND flash memory with a
controller is no longer enough. We also need an interface to the hardware that abstracts
most of the technical details, such as error correction, away.
Managed flash
The burden of supporting flash memory in the operating system – NAND in particular –
becomes smaller if there is a well-defined hardware interface and a standard flash controller
that hides the complexities of the memory. This is managed flash memory, and it is
becoming more and more common. In essence, it means combining one or more flash chips
with a microcontroller that offers an ideal storage device with a small sector size, and that is
compatible with conventional filesystems. The most important types of chips for embedded
systems are Secure Digital (SD) cards and the embedded variant known 
as eMMC.

MultiMediaCard and Secure Digital cards
The MultiMediaCard (MMC) was introduced in 1997 by SanDisk and Siemens as a form
of packaged storage using flash memory. Shortly after, in 1999, SanDisk, Matsushita, and
Toshiba created the Secure Digital (SD) card, which is based on MMC but adds encryption
and DRM (the "secure" part of the name). Both were intended for consumer electronics
such as digital cameras, music players, and similar devices. Currently, SD cards are the
dominant form of managed flash for consumer and embedded electronics, even though the
encryption features are seldom used. Newer versions of the SD specification allow smaller
packaging (mini SD and microSD, which is often written as uSD) and larger capacities:
high capacity SDHC up to 32 GB and extended capacity SDXC up to 2TB.
The hardware interface for MMC and SD cards is very similar, and it is possible to use full-
sized MMC cards in full-sized SD card slots (but not the other way round). Early
incarnations used a 1-bit Serial Peripheral Interface (SPI); more recent cards use a 
4-bit interface.
There is a command set for reading and writing memory in sectors of 512 bytes. Inside the
package is a microcontroller and one or more NAND flash chips, as shown in the following
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diagram:

Figure 9.2 – SD card package

The microcontroller implements the command set and manages the flash memory,
performing the function of a flash translation layer, as described later in this chapter. They
are preformatted with a FAT filesystem: FAT16 on SDSC cards, FAT32 on SDHC, and
exFAT on SDXC. The quality of the NAND flash chips and the software on the
microcontroller varies greatly between cards. It is questionable whether any of them are
sufficiently reliable for deep embedded use, and certainly not with a FAT filesystem, which
is prone to file corruption. Remember that the prime use case for MMC and SD cards is for
removable storage on cameras, tablets, and phones.

eMMC
Embedded MMC or eMMC is simply MMC memory that's been packaged so that it can
be soldered on to the motherboard, using a 4- or 8-bit interface for data transfer. However,
they are intended to be used as storage for an operating system, so the components are
capable of performing that task. The chips are usually not preformatted with any filesystem.

Other types of managed flash
One of the first managed flash technologies was CompactFlash (CF), which uses a subset
of the Personal Computer Memory Card International Association (PCMCIA)
hardware interface. CF exposes memory through a parallel ATA interface and appears to the
operating system as a standard hard disk. They were common in x86-based single board
computers and professional video and camera equipment.
One other format that we use every day is the USB flash drive. In this case, memory is
accessed through a USB interface and the controller implements the USB mass storage
specification, as well as the flash translation layer and interface to the flash chip, or chips.
The USB mass storage protocol, in turn, is based on the SCSI disk command set. As with
MMC and SD cards, they are usually preformatted with a FAT filesystem. Their main use
case in embedded systems is to exchange data with PCs.



A recent addition to the list of options for managed flash storage is Universal Flash
Storage (UFS). Like eMMC, it is packaged in a chip that is mounted on the motherboard. It
has a high-speed serial interface and can achieve data rates greater than eMMC. It supports
a SCSI disk command set.
Now that we know what types of flash are available, let's learn how U-Boot loads a kernel
image from each of them.

Accessing flash memory from the bootloader
In Chapter 3, All About Bootloaders, I mentioned the need for the bootloader to load kernel
binaries and other images from various flash devices, and to perform system maintenance
tasks such as erasing and reprogramming flash memory. It follows that the bootloader must
have the drivers and infrastructure needed to support read, erase, and write operations on
the type of memory you have, whether it be NOR, NAND, or managed. I will use U-Boot
in the following examples; other bootloaders follow a similar pattern.

U-Boot and NOR flash
U-Boot has drivers for NOR CFI chips in drivers/mtd and utilizes various erase
commands to erase memory and cp.b to copy data byte by byte, programming the flash
cells. Suppose that you have NOR flash memory mapped from 0x40000000 to 0x48000000,
of which 4 MiB, starting at 0x40040000, is a kernel image. Here, you would load a new
kernel into flash using these U-Boot commands:

=> tftpboot 100000 uImage

=> erase 40040000 403fffff

=> cp.b 100000 40040000 $(filesize)

The filesize variable in the preceding example is set by the tftpboot command, to the
size of the file just downloaded.

U-Boot and NAND flash
For NAND flash, you need a driver for the NAND flash controller on your SoC, which you
can find in the U-Boot source code in the drivers/mtd/nand directory. You can use the
nand command to manage memory using the erase, write, and read sub-commands. This
example shows a kernel image being loaded into RAM at 0x82000000 and then placed into
flash, starting at the 0x280000 offset:

=> tftpboot 82000000 uImage

=> nand erase 280000 400000

=> nand write 82000000 280000 $(filesize)



U-Boot can also read files stored in the JFFS2, YAFFS2, and UBIFS filesystems. nand
write will skip blocks that are marked as bad. If the data you're writing is for a filesystem,
make sure that the filesystem also skips bad blocks.

U-Boot and MMC, SD, and eMMC
U-Boot has drivers for several MMC controllers in drivers/mmc. You can access raw data
using mmc read and mmc write at the user interface level, which allows you to handle raw
kernel and filesystem images.
U-Boot can also read files from the FAT32 and ext4 filesystems on MMC storage.
U-Boot needs drivers to access NOR, NAND, and managed flash. Which driver you should
use depends on your choice of NOR chip or the flash controller on your SoC. Accessing
raw NOR and NAND flash from Linux involves additional layers of software.

Accessing flash memory from Linux
Raw NOR and NAND flash memory is handled by the Memory Technology Device
subsystem, or MTD, which provides you with basic interfaces to read, erase, and write
blocks of flash memory. In the case of NAND flash, there are also functions that handle the
OOB area and are used to identify bad blocks.
For managed flash, you need drivers to handle a particular hardware interface. MMC/SD
cards and eMMC use the mmcblk driver, while CompactFlash and hard drives use the SCSI
disk driver, sd. USB flash drives use the usb_storage driver, together with the 
sd driver.

Memory technology devices
The MTD subsystem was started by David Woodhouse in 1999 and has been extensively
developed over the intervening years. In this section, I will concentrate on the way it
handles the two main technologies, NOR and NAND flash.
MTD consists of three layers: a core set of functions, a set of drivers for various types of
chips, and user-level drivers that present the flash memory as a character device or a block
device, as shown in the following diagram:



Figure 9.3 – MTD layers

The chip drivers are at the lowest level and interface with flash chips. Only a small number
of drivers are needed for NOR flash chips, enough to cover the CFI standard and variations,
plus a few non-compliant chips, which are now mostly obsolete. For NAND flash, you will
need a driver for the NAND flash controller you are using; this is usually supplied as part of
the board support package. There are drivers for about 40 of them in the current mainline
kernel, in the drivers/mtd/nand directory.
MTD partitions
In most cases, you will want to partition the flash memory into a number of areas, for
example, to provide space for a bootloader, a kernel image, or a root filesystem. In MTD,
there are several ways to specify the size and location of partitions, with the main ones
being as follows:

Through the kernel command line using CONFIG_MTD_CMDLINE_PARTS
Via the device tree using CONFIG_MTD_OF_PARTS
With a platform-mapping driver

In the case of the first option, the kernel command-line option to use is mtdparts, which is
defined as follows in the Linux source code in drivers/mtd/cmdlinepart.c:

mtdparts=<mtddef>[;<mtddef]

<mtddef> := <mtd-id>:<partdef>[,<partdef>]

<mtd-id> := unique name for the chip

<partdef> := <size>[@<offset>][<name>][ro][lk]

<size> := size of partition OR "-" to denote all remaining

     space

<offset> := offset to the start of the partition; leave blank

     to follow the previous partition without any gap

<name> := '(' NAME ')'

Perhaps an example will help. Imagine that you have one flash chip of 128 MiB that is to be
divided into five partitions. A typical command line would be this:

mtdparts=:512k(SPL)ro,780k(U-Boot)ro,128k(U-BootEnv),

4m(Kernel),-(Filesystem)



The first element, before the colon, is mtd-id, which identifies the flash chip, either by
number or by the name assigned by the board support package. If there is only one chip, as
there is here, it can be left empty. If there is more than one chip, the information for each is
separated by a semicolon. Then, for each chip, there is a comma-separated list of partitions,
each with a size in bytes, KiB (k) or MiB (m), and a name in parentheses. The ro suffix
makes the partition read-only to MTD and is often used to prevent accidental overwriting of
the bootloader. The size of the last partition for the chip may be replaced by a dash (-),
indicating that it should take up all the remaining space.
You can see a summary of the configuration at runtime by reading /proc/mtd:

# cat /proc/mtd

dev: size erasesize name

mtd0: 00080000 00020000 "SPL"

mtd1: 000C3000 00020000 "U-Boot"

mtd2: 00020000 00020000 "U-BootEnv"

mtd3: 00400000 00020000 "Kernel"

mtd4: 07A9D000 00020000 "Filesystem"

There is more detailed information for each partition in /sys/class/mtd, including the
erase block size and the page size, and it is nicely summarized using mtdinfo:

# mtdinfo /dev/mtd0

mtd0

Name:           SPL

Type:           nand

Eraseblock size:       131072 bytes, 128.0 KiB

Amount of eraseblocks:     4 (524288 bytes, 512.0 KiB)

Minimum input/output unit size: 2048 bytes

Sub-page size:        512 bytes

OOB size:        64 bytes

Character device major/minor:  90:0

Bad blocks are allowed:    true

Device is writable:   false

Another way of specifying MTD partitions is through the device tree. Here is an example
that creates the same partitions as the command line example:

nand@0,0 {

#address-cells = <1>;

#size-cells = <1>;

partition@0 {

  label = "SPL";

  reg = <0 0x80000>;

};

partition@80000 {

  label = "U-Boot";

  reg = <0x80000 0xc3000>;

};



partition@143000 {

  label = "U-BootEnv";

  reg = <0x143000 0x20000>;

};

partition@163000 {

  label = "Kernel";

  reg = <0x163000 0x400000>;

};

partition@563000 {

  label = "Filesystem";

  reg = <0x563000 0x7a9d000>;

};

};

A third alternative is to code the partition information as platform data in an
mtd_partition structure, as shown in this example taken from arch/arm/mach-

omap2/board-omap3beagle.c (NAND_BLOCK_SIZE is defined elsewhere as 128 KiB):
static struct mtd_partition omap3beagle_nand_partitions[] = {

{

  .name = "X-Loader",

  .offset = 0,

  .size = 4 * NAND_BLOCK_SIZE,

  .mask_flags = MTD_WRITEABLE, /* force read-only */

},

{

  .name = "U-Boot",

  .offset = 0x80000;

  .size = 15 * NAND_BLOCK_SIZE,

  .mask_flags = MTD_WRITEABLE, /* force read-only */

},

{

  .name = "U-Boot Env",

  .offset = 0x260000;

  .size = 1 * NAND_BLOCK_SIZE,

},

{

  .name = "Kernel",

  .offset = 0x280000;

  .size = 32 * NAND_BLOCK_SIZE,

},

{

  .name = "File System",

  .offset = 0x680000;

  .size = MTDPART_SIZ_FULL,

},



};

Platform data is deprecated: you will only find it used in BSPs for old SoCs that have not
been updated to use a device tree.
MTD device drivers
The upper level of the MTD subsystem contains a pair of device drivers:

A character device, with a major number of 90. There are two device nodes per MTD
partition number, N: /dev/mtdN (minor number=N*2) and /dev/mtdNro (minor
number=(N*2 + 1)). The latter is just a read-only version of the former.
A block device, with a major number of 31 and a minor number of N. The device
nodes are in the form /dev/mtdblockN.

Let's look at the character device first since it is the most commonly used of the two.
The MTD character device, mtd
The character devices are the most important: they allow you to access the underlying flash
memory as an array of bytes so that you can read and write (program) the flash. It also
implements a number of ioctl functions that allow you to erase blocks and manage the
OOB area on NAND chips. The following list has been taken from
include/uapi/mtd/mtd-abi.h:

MEMGETINFO: Gets basic MTD characteristic information.
MEMERASE: Erases blocks in the MTD partition.
MEMWRITEOOB: Writes out-of-band data for the page.
MEMREADOOB: Reads out-of-band data for the page.
MEMLOCK: Locks the chip (if supported).
MEMUNLOCK: Unlocks the chip (if supported).
MEMGETREGIONCOUNT: Gets the number of erase regions: non-zero if there are erase
blocks of differing sizes in the partition, which is common for NOR flash, 
rare on NAND.
MEMGETREGIONINFO: If MEMGETREGIONCOUNT is non-zero, this can be used to get the
offset, size, and block count of each region.
MEMGETOOBSEL: Deprecated.
MEMGETBADBLOCK: This gets the bad block flag.
MEMSETBADBLOCK: This sets the bad block flag.
OTPSELECT: This sets OTP (one-time programmable) mode, if the chip supports it.
OTPGETREGIONCOUNT: This gets the number of OTP regions.
OTPGETREGIONINFO: This gets information about an OTP region.
ECCGETLAYOUT: Deprecated.



There is a set of utility programs known as mtd-utils for manipulating flash memory that
makes use of these ioctl functions. The source can be found at git://git.infradead.org/mtd-
utils.git and is available as a package in the Yocto Project and Buildroot. The essential tools
are shown in the following list. The package also contains utilities for the JFFS2 and
UBI/UBIFS filesystems, which I will cover later. For each of these tools, the MTD
character device is one of the following parameters:

flash_erase: Erases a range of blocks.
flash_lock: Locks a range of blocks.
flash_unlock: Unlocks a range of blocks.
nanddump: Dumps memory from NAND flash, optionally including the OOB 
area. Skips bad blocks.
nandtest: Tests and performs diagnostics for NAND flash.
nandwrite: Writes (programs) data from a file into NAND flash, skipping 
bad blocks.

TIP
You must always erase flash memory before writing new contents to it:
flash_erase is the command that does this.

To program NOR flash, you simply copy bytes to the MTD device node using a file copy
command such as cp.
Unfortunately, this doesn't work with NAND memory as the copy will fail at the first bad
block. Instead, use nandwrite, which skips over any bad blocks. To read back NAND
memory, you should use nanddump, which also skips bad blocks.
The MTD block device, mtdblock
The mtdblock driver isn't used often. Its purpose is to present flash memory as a block
device you can use to format and mount a filesystem. However, it has severe limitations
because it does not handle bad blocks in NAND flash, it does not do wear leveling, and it
does not handle the mismatch in size between filesystem blocks and flash erase blocks. In
other words, it does not have a flash translation layer, which is essential for reliable file
storage. The only case where the mtdblock device is useful is for mounting read-only file
systems such as SquashFS on top of reliable flash memory such as NOR.

TIP
If you want a read-only filesystem on NAND flash, you should use the UBI driver, as
described later in this chapter.
Logging kernel oops to MTD
A kernel error, or oops, is normally logged via the klogd and syslogd daemons to a circular
memory buffer or a file. Following a reboot, the log will be lost in the case of a ring buffer,
and even in the case of a file, it may not have been properly written to before the system
crashed. A more reliable method is to write oops and kernel panics to an MTD partition as a



circular log buffer. You can enable it with CONFIG_MTD_OOPS and add console=ttyMTDN to
the kernel command line, with N being the MTD device number to write the messages to.
Simulating NAND memory
The NAND simulator emulates a NAND chip using system RAM. The main use is for
testing code that has to be NAND-aware without access to physical NAND memory. In
particular, the ability to simulate bad blocks, bit flips, and other errors allows you to test
code paths that are difficult to exercise using real flash memory. For more information, the
best place to look is in the code itself, which provides a comprehensive description of the
ways you can configure the driver. The code is in drivers/mtd/nand/nandsim.c. Enable it
with the CONFIG_MTD_NAND_NANDSIM kernel configuration.

The MMC block driver
MMC/SD cards and eMMC chips are accessed using the mmcblk block driver. You 
need a host controller to match the MMC adapter you are using, which is part of 
the board support package. The drivers are located in the Linux source code in 
drivers/mmc/host.
MMC storage is partitioned using a partition table in exactly the same way you would for
hard disks; that is, by using fdisk or a similar utility.
We now know how Linux accesses each type of flash. Next, we will look at the problems
intrinsic to flash memory and how Linux deals with them, either by way of the filesystem
or the block device driver.

Filesystems for flash memory
There are several challenges when it comes to making efficient use of flash memory for
mass storage: the mismatch between the size of an erase block and a disk sector, the limited
number of erase cycles per erase block, and the need for bad block handling on NAND
chips. These differences are resolved by a flash translation layer, or FTL.

Flash translation layers
A flash translation layer has the following features:

Sub allocation: Filesystems work best with a small allocation unit, traditionally a 512-
byte sector. This is much smaller than a flash erase block of 128 KiB or more.
Therefore, erase blocks have to be subdivided into smaller units to avoid wasting large
amounts of space.
Garbage collection: A consequence of suballocation is that an erase block will
contain a mixture of good data and stale data once the filesystem has been in use for a



while. Since we can only free up whole erase blocks, the only way to reclaim this free
space is to coalesce the good data into one place, and then return the now empty erase
block to the free list. This is known as garbage collection, and it is usually
implemented as a background thread.
Wear leveling: There is a limit on the number of erase cycles for each block. To
maximize the lifespan of a chip, it is important to move data around so that each block
is erased roughly the same number of times.
Bad block handling: On NAND flash chips, you have to avoid using any block
marked bad and also mark good blocks as bad if they cannot be erased.
Robustness: Embedded devices may be powered off or reset without warning, so any
filesystem should be able to cope without corruption, usually by incorporating a
journal or a log of transactions.

There are several ways to deploy the flash translation layer:
In the filesystem: As with JFFS2, YAFFS2, and UBIFS.
In the block device driver: The UBI driver, which UBIFS depends on, implements
some aspects of a flash translation layer.
In the device controller: As with managed flash devices.

When the flash translation layer is in the filesystem or the block driver, the code is part of
the kernel and so it is open source, meaning that we can see how it works and we can
expect that it will be improved over time. On the other hand, if the FTL is inside a managed
flash device, it is hidden from view and we cannot verify whether it works as we would
want. Not only that, but putting the FTL into the disk controller means that it misses out on
information that is held at the filesystem layer, such as which sectors belong to files that
have been deleted and so do not contain useful data anymore. The latter problem is solved
by adding commands that pass this information between the filesystem and the device. I
will describe how this works in the section on the TRIM command later on. However, the
question of code visibility remains. If you are using managed flash, you just have to choose
a manufacturer you can trust.
Now that we know the motivation behind filesystems, let's look at which filesystems are
best suited for which types of flash.

Filesystems for NOR and NAND flash memory
To use raw flash chips for mass storage, you have to use a filesystem that understands the
peculiarities of the underlying technology. There are three such filesystems:

JFFS2 (Journaling Flash File System 2): This was the first flash filesystem for
Linux and is still in use today. It works for NOR and NAND memory, but is
notoriously slow during mount.



YAFFS2 (Yet Another Flash File System 2): This is similar to JFFS2, but
specifically for NAND flash memory. It was adopted by Google as the preferred raw
flash filesystem on Android devices.
UBIFS (Unsorted Block Image File System): This works in conjunction with the
UBI block driver to create a reliable flash filesystem. It works well with both NOR and
NAND memory, and since it generally offers better performance than JFFS2 or
YAFFS2, it should be the preferred solution for new designs.

All of these use MTD as the common interface to flash memory.

JFFS2
The Journaling Flash File System had its beginnings in the software for the Axis 2100
network camera in 1999. For many years, it was the only flash filesystem for Linux and has
been deployed on many thousands of different types of devices. Today, it is not the best
choice, but I will cover it first because it shows the beginning of the evolutionary path.
JFFS2 is a log-structured filesystem that uses MTD to access flash memory. In a log-
structured filesystem, changes are written sequentially as nodes to flash memory. A node
may contain changes to a directory, such as the names of files created and deleted, or it may
contain changes to file data. After a while, a node may be superseded by information
contained in subsequent nodes and becomes an obsolete node. Both NOR and NAND flash
are organized as erase blocks. Erasing a block sets all its bits to 1.
JFFS2 categorizes erase blocks into three types:

Free: This contains no nodes at all.
Clean: This only contains valid nodes.
Dirty: This contains at least one obsolete node.

At any one time, there is one block receiving updates, which is called the open block. If
power is lost or the system is reset, the only data that can be lost is the last write to the open
block. In addition, nodes are compressed as they are written, increasing the effective
storage capacity of the flash chip, which is important if you are using expensive NOR flash
memory.
When the number of free blocks falls below a certain threshold, a garbage collector kernel
thread is started, which scans for dirty blocks, copies the valid nodes into the open block,
and then frees up the dirty block.
At the same time, the garbage collector provides a crude form of wear leveling because it
cycles valid data from one block to another. The way that the open block is chosen means
that each block is erased roughly the same number of times, as long as it contains data that
changes from time to time. Sometimes, a clean block is chosen for garbage collection to
make sure that blocks containing static data that is seldom written are also wear-leveled.



JFFS2 filesystems have a write-through cache, meaning that writes are written to the flash
memory synchronously as if they have been mounted with the -o sync option. While
improving reliability, it does increase the time to write data. There is a further problem with
small writes: if the length of a write is comparable to the size of the node header (40 bytes),
the overhead becomes high. A well-known corner case is log files, produced, for example,
by syslogd.
Summary nodes
There is one overriding disadvantage to JFFS2: since there is no on-chip index, the
directory's structure has to be deduced at mount-time by reading the log from start to finish.
At the end of the scan, you have a complete picture of the directory structure of the valid
nodes, but the time taken is proportional to the size of the partition. It is not uncommon to
see mount times of the order of one second per megabyte, leading to total mount times of
tens or hundreds of seconds.
Summary nodes became an option in Linux 2.6.15 for reducing the time to scan during a
mount. A summary node is written at the end of the open erase block, just before it is
closed. The summary node contains all of the information needed for the mount-time scan,
thereby reducing the amount of data to process during the scan. Summary nodes can reduce
mount times by a factor of between two and five, at the expense of an overhead of about
5% of the storage space. They are enabled with the CONFIG_JFFS2_SUMMARY kernel
configuration.
Clean markers
An erased block with all its bits set to 1 is indistinguishable from a block that has been
written with 1s, but the latter has not had its memory cells refreshed and cannot be
programmed again until it is erased. JFFS2 uses a mechanism called clean markers to
distinguish between these two situations. After a successful block erase, a clean marker is
written, either to the beginning of the block or to the OOB area of the first page of the
block. If the clean marker exists, then it must be a clean block.
Creating a JFFS2 filesystem
Creating an empty JFFS2 filesystem at runtime is as simple as erasing an MTD partition
with clean markers and then mounting it. There is no formatting step because a blank JFFS2
filesystem consists entirely of free blocks. For example, to format MTD partition 6, you
would enter these commands on the device:

# flash_erase -j /dev/mtd6 0 0

# mount -t jffs2 mtd6 /mnt

The -j option to flash_erase adds the clean markers, and mounting with the jffs2 type
presents the partition as an empty filesystem. Note that the device to be mounted is given as
mtd6, not /dev/mtd6. Alternatively, you can give the block the /dev/mtdblock6 device
node. This is just a peculiarity of JFFS2. Once mounted, you can treat it like any other
filesystem.
You can create a filesystem image directly from the staging area of your development
system using mkfs.jffs2 to write out the files in JFFS2 format, and sumtool to add the
summary nodes. Both of these are part of the mtd-utils package.



As an example, to create an image of the files in rootfs for a NAND flash device with an
erase block size of 128 KiB (0x20000) and with summary nodes, you would use these two
commands:

$ mkfs.jffs2 -n -e 0x20000 -p -d ~/rootfs -o ~/rootfs.jffs2

$ sumtool -n -e 0x20000 -p -i ~/rootfs.jffs2 -o ~/rootfs-sum.jffs2

The -p option adds padding at the end of the image file to make it a whole number of erase
blocks. The -n option suppresses the creation of clean markers in the image, which is
normal for NAND devices, as the clean marker is in the OOB area. For NOR devices, you
would leave out the -n option. You can use a device table with mkfs.jffs2 to set the
permissions and the ownership of files by adding -D [device table]. Of course, Buildroot
and the Yocto Project will do all this for you.
You can program the image into flash memory from your bootloader. For example, if you
have loaded a filesystem image into RAM at address 0x82000000 and you want to load it
into a flash partition that begins at 0x163000 bytes from the start of the flash chip and is
0x7a9d000 bytes long, the U-Boot commands for this would be as follows:

nand erase clean 163000 7a9d000

nand write 82000000 163000 7a9d000

You can do the same thing from Linux using the mtd driver, like this:
# flash_erase -j /dev/mtd6 0 0

# nandwrite /dev/mtd6 rootfs-sum.jffs2

To boot with a JFFS2 root filesystem, you need to pass the mtdblock device on the kernel
command line for the partition and a rootfstype since JFFS2 cannot be 
auto-detected:

root=/dev/mtdblock6 rootfstype=jffs2

Shortly after JFFS2 was introduced, another log-structured filesystem appeared.

YAFFS2
The YAFFS filesystem was written by Charles Manning, beginning in 2001, specifically 
to handle NAND flash chips at a time when JFFS2 did not. Subsequent changes to handle
larger (2 KiB) page sizes resulted in YAFFS2. The website for YAFFS is
https://www.yaffs.net.
YAFFS is also a log-structured filesystem that follows the same design principles as JFFS2.
The different design decisions mean that it has a faster mount-time scan, simpler and faster
garbage collection, and has no compression, which speeds up reads and writes at the
expense of less efficient use of storage.
YAFFS is not limited to Linux; it has been ported to a wide range of operating systems. It
has a dual license: GPLv2, in order to be compatible with Linux, and a commercial license
for other operating systems. Unfortunately, the YAFFS code has never been merged into
mainline Linux, so you will have to patch your kernel.

https://www.yaffs.net/


To get YAFFS2 and patch a kernel, you would use the following:
$ git clone git://www.aleph1.co.uk/yaffs2

$ cd yaffs2

$ ./patch-ker.sh c m <path to your link source>

Then, you can configure the kernel with CONFIG_YAFFS_YAFFS2.
Creating a YAFFS2 filesystem
As with JFFS2, to create a YAFFS2 filesystem at runtime, you only need to erase the
partition and mount it, but note that in this case, you do not enable clean markers:

# flash_erase /dev/mtd/mtd6 0 0

# mount -t yaffs2 /dev/mtdblock6 /mnt

To create a filesystem image, the simplest thing to do is use the mkyaffs2 tool from
https://code.google.com/p/yaffs2utils using the following command:

$ mkyaffs2 -c 2048 -s 64 rootfs rootfs.yaffs2

Here, -c is the page size and -s the OOB size. There is a tool named mkyaffs2image that is
part of the YAFFS code, but it has a couple of drawbacks. Firstly, the page and OOB size
are hard coded in the source: you will have to edit and recompile if you have memory that
does not match the defaults of 2,048 and 64. Secondly, the OOB layout is incompatible with
MTD, which uses the first two bytes as a bad block marker, whereas mkyaffs2image uses
those bytes to store part of the YAFFS metadata.
To copy the image to the MTD partition from a Linux shell prompt on the target, follow
these steps:

# flash_erase /dev/mtd6 0 0

# nandwrite -a /dev/mtd6 rootfs.yaffs2

To boot with a YAFFS2 root filesystem, add the following to the kernel command line:
root=/dev/mtdblock6 rootfstype=yaffs2

While we are on the topic of filesystems for raw NOR and NAND flash, let's look at one of
the more modern options. This filesystem runs on top of the UBI driver.

UBI and UBIFS
The Unsorted Block Image (UBI) driver is a volume manager for flash memory that takes
care of bad block handling and wear leveling. It was implemented by Artem Bityutskiy and
first appeared in Linux 2.6.22. In parallel with that, engineers at Nokia were working on a
filesystem that would take advantage of the features of UBI, which they called UBIFS; it
appeared in Linux 2.6.27. Splitting the flash translation layer in this way makes the code
more modular and also allows other filesystems to take advantage of the UBI driver, as we
shall see later on.
UBI
UBI provides an idealized, reliable view of a flash chip by mapping physical erase blocks
(PEB) to logical erase blocks (LEB). Bad blocks are not mapped to LEBs and so are never

https://code.google.com/p/yaffs2utils


used. If a block cannot be erased, it is marked as bad and dropped from the mapping. UBI
keeps a count of the number of times each PEB has been erased in the header of the LEB,
and then changes the mapping to ensure that each PEB is erased the same number of times.
UBI accesses the flash memory through the MTD layer. As an extra feature, it can divide an
MTD partition into a number of UBI volumes, which improves wear leveling in the
following way: imagine that you have two filesystems, one containing fairly static data,
such as a root filesystem, and the other containing data that is constantly changing.
If they are stored in separate MTD partitions, the wear leveling only has an effect on the
second one, whereas if you choose to store them in two UBI volumes in a single MTD
partition, the wear leveling takes place over both areas of the storage, and the lifetime of the
flash memory is increased. The following diagram illustrates this situation:

Figure 9.4 – UBI volumes

In this way, UBI fulfills two of the requirements of a flash translation layer: wear leveling
and bad-block handling.
To prepare an MTD partition for UBI, you don't use flash_erase as with JFFS2 and
YAFFS2. Instead, you use the ubiformat utility, which preserves the erase counts that are
stored in the PEB headers. ubiformat needs to know the minimum unit of I/O, which for
most NAND flash chips is the page size, but some chips allow reading and writing in
subpages that are a half or a quarter of the page size. Consult the chip data sheet for details
and, if in doubt, use the page size. This example prepares mtd6 using a page size of 2048
bytes:

# ubiformat /dev/mtd6 -s 2048

ubiformat: mtd0 (nand), size 134217728 bytes (128.0 MiB),

1024 eraseblocks of 131072 bytes (128.0 KiB),

min. I/O size 2048 bytes

Then, you can use the ubiattach command to load the UBI driver on an MTD partition
that has been prepared in this way:

# ubiattach -p /dev/mtd6 -O 2048

UBI device number 0, total 1024 LEBs (130023424 bytes, 124.0 MiB),

available 998 LEBs (126722048 bytes, 120.9 MiB),



LEB size 126976 bytes (124.0 KiB)

This creates the /dev/ubi0 device node, through which you can access the UBI volumes.
You can use ubiattach on several MTD partitions, in which case they can 
be accessed through /dev/ubi1, /dev/ubi2, and so on. Note that since each LEB has 
a header containing the meta information used by UBI, the LEB is smaller than the PEB by
two pages. For example, a chip with a PEB size of 128 KiB and 2 KiB pages would have an
LEB of 124 KiB. This is important information that you will need when creating a UBIFS
image.
The PEB-to-LEB mapping is loaded into memory during the attach phase, a process that
takes time proportional to the number of PEBs, typically a few seconds. A new feature was
added in Linux 3.7 called the UBI fastmap, which checkpoints the mapping to flash from
time to time and so reduces the attach time. The kernel configuration option for this is
CONFIG_MTD_UBI_FASTMAP.
The first time you attach to an MTD partition after a ubiformat, there will be no volumes.
You can create volumes using ubimkvol. For example, suppose you have a 128 MiB MTD
partition and you want to split it into two volumes; the first is to be 32 MiB in size and the
second will take up the remaining space:

# ubimkvol /dev/ubi0 -N vol_1 -s 32MiB

Volume ID 0, size 265 LEBs (33648640 bytes, 32.1 MiB),

LEB size 126976 bytes (124.0 KiB), dynamic, name "vol_1", alignment 1

# ubimkvol /dev/ubi0 -N vol_2 -m

Volume ID 1, size 733 LEBs (93073408 bytes, 88.8 MiB),

LEB size 126976 bytes (124.0 KiB), dynamic, name "vol_2", alignment 1

Now, you have a device with two nodes: /dev/ubi0_0 and /dev/ubi0_1. You can confirm
this using ubinfo:

# ubinfo -a /dev/ubi0

ubi0

Volumes count: 2

Logical eraseblock size: 126976 bytes, 124.0 KiB

Total amount of logical eraseblocks: 1024 (130023424 bytes, 124.0 MiB)

Amount of available logical eraseblocks: 0 (0 bytes)

Maximum count of volumes 128

Count of bad physical eraseblocks: 0

Count of reserved physical eraseblocks: 20

Current maximum erase counter value: 1

Minimum input/output unit size: 2048 bytes

Character device major/minor: 250:0

Present volumes: 0, 1

Volume ID: 0 (on ubi0)

Type: dynamic

Alignment: 1

Size: 265 LEBs (33648640 bytes, 32.1 MiB)

State: OK



Name: vol_1

Character device major/minor: 250:1

-----------------------------------

Volume ID: 1 (on ubi0)

Type: dynamic

Alignment: 1

Size: 733 LEBs (93073408 bytes, 88.8 MiB)

State: OK

Name: vol_2

Character device major/minor: 250:2

At this point, you have a 128 MiB MTD partition containing two UBI volumes of sizes 
32 MiB and 88.8 MiB. The total storage available is 32 MiB plus 88.8 MiB, which equals
120.8 MiB. The remaining space, 7.2 MiB, is taken up by the UBI headers at the start of
each PEB, and space is reserved for mapping out blocks that go bad during the lifetime 
of the chip.
UBIFS
UBIFS uses a UBI volume to create a robust filesystem. It adds sub-allocation and garbage
collection to create a complete flash translation layer. Unlike JFFS2 and YAFFS2, it stores
index information on-chip, so mounting is fast, although don't forget that attaching the UBI
volume beforehand may take a significant amount of time. It also allows write-back caching
as in a normal disk filesystem, which means that writes are much faster, but with the usual
problem of potential loss of data that has not been flushed from the cache to flash memory
in the event of power down. You can resolve this problem by making 
careful use of the fsync(2) and fdatasync(2) functions to force a flush of file data at
crucial points.
UBIFS has a journal for fast recovery in the event of power down. The minimum size of the
journal is 4 MiB, so UBIFS is not suitable for very small flash devices.
Once you have created the UBI volumes, you can mount them using the device node for the
volume, such as /dev/ubi0_0, or by using the device node for the whole partition plus the
volume name, as shown here:

# mount -t ubifs ubi0:vol_1 /mnt

Creating a filesystem image for UBIFS is a two-stage process: first, you create a UBIFS
image using mkfs.ubifs, and then embed it into a UBI volume using ubinize.
For the first stage, mkfs.ubifs needs to be informed of the page size with -m, the size of the
UBI LEB with -e, and the maximum number of erase blocks in the volume with -c. If the
first volume is 32 MiB and an erase block is 128 KiB, then the number of erase blocks is
256. So, to take the contents of the rootfs directory and create a UBIFS image named
rootfs.ubi, you would type the following:

$ mkfs.ubifs -r rootfs -m 2048 -e 124KiB -c 256 -o rootfs.ubi

The second stage requires you to create a configuration file for ubinize, which describes
the characteristics of each volume in the image. The help page (ubinize -h) provides
details about the format. This example creates two volumes, vol_1 and vol_2:



[ubifsi_vol_1]

mode=ubi

image=rootfs.ubi

vol_id=0

vol_name=vol_1

vol_size=32MiB

vol_type=dynamic

[ubifsi_vol_2]

mode=ubi

image=data.ubi

vol_id=1

vol_name=vol_2

vol_type=dynamic

vol_flags=autoresize

The second volume has an auto-resize flag and so will expand to fill the remaining space
on the MTD partition. Only one volume can have this flag. From this information, ubinize
will create an image file named by the -o parameter, with the PEB size as -p, the page size
as -m, and the sub-page size as -s:

$ ubinize -o ~/ubi.img -p 128KiB -m 2048 -s 512 ubinize.cfg

To install this image on the target, you would enter these commands on the target:
# ubiformat /dev/mtd6 -s 2048

# nandwrite /dev/mtd6 /ubi.img

# ubiattach -p /dev/mtd6 -O 2048

If you want to boot with a UBIFS root filesystem, you will need to provide these kernel
command-line parameters:

ubi.mtd=6 root=ubi0:vol_1 rootfstype=ubifs

UBIFS completes our survey of filesystems for raw NOR and NAND flash memory. Next,
we'll look at filesystems for managed flash.

Filesystems for managed flash
As the trend toward managed flash technologies continues, particularly eMMC, we need to
consider how to use it effectively. While they appear to have the same characteristics as
hard disk drives, the underlying NAND flash chips have the limitations of large erase
blocks with limited erase cycles and bad block handling. And, of course, we need
robustness in the event of losing power.
It is possible to use any of the normal disk filesystems, but we should try to choose one that
reduces disk writes and has a fast restart after an unscheduled shutdown.

Flashbench



To make optimum use of the underlying flash memory, you need to know the erase block
size and page size. Manufacturers do not publish these numbers as a rule, but it is possible
to deduce them by observing the behavior of the chip or card.
Flashbench is one such tool. It was initially written by Arnd Bergman, as described in the
LWN article available at https://lwn.net/Articles/428584. You can get the code from
https://github.com/bradfa/flashbench.
Here is a typical run on a SanDisk 4 GB SDHC card:

$ sudo ./flashbench -a /dev/mmcblk0 --blocksize=1024

align 536870912 pre 4.38ms on 4.48ms post 3.92ms diff 332µs

align 268435456 pre 4.86ms on 4.9ms post 4.48ms diff 227µs

align 134217728 pre 4.57ms on 5.99ms post 5.12ms diff 1.15ms

align 67108864 pre 4.95ms on 5.03ms post 4.54ms diff 292µs

align 33554432 pre 5.46ms on 5.48ms post 4.58ms diff 462µs

align 16777216 pre 3.16ms on 3.28ms post 2.52ms diff 446µs

align 8388608 pre 3.89ms on 4.1ms post 3.07ms diff 622µs

align 4194304 pre 4.01ms on 4.89ms post 3.9ms diff 940µs

align 2097152 pre 3.55ms on 4.42ms post 3.46ms diff 917µs

align 1048576 pre 4.19ms on 5.02ms post 4.09ms diff 876µs

align 524288 pre 3.83ms on 4.55ms post 3.65ms diff 805µs

align 262144 pre 3.95ms on 4.25ms post 3.57ms diff 485µs

align 131072 pre 4.2ms on 4.25ms post 3.58ms diff 362µs

align 65536 pre 3.89ms on 4.24ms post 3.57ms diff 511µs

align 32768 pre 3.94ms on 4.28ms post 3.6ms diff 502µs

align 16384 pre 4.82ms on 4.86ms post 4.17ms diff 372µs

align 8192 pre 4.81ms on 4.83ms post 4.16ms diff 349µs

align 4096 pre 4.16ms on 4.21ms post 4.16ms diff 52.4µs

align 2048 pre 4.16ms on 4.16ms post 4.17ms diff 9ns

flashbench reads blocks of, in this case, 1,024 bytes just before and just after various
power-of-two boundaries. As you cross a page or erase a block boundary, the reads after the
boundary take longer. The rightmost column shows the difference and is the one that is
most interesting. Reading from the bottom, there is a big jump at 4 KiB, which is the most
likely size of a page. There is a second jump from 52.4µs to 349µs at 8 KiB. This is fairly
common and indicates that the card can use multi-plane access to read two 4 KiB pages at
the same time. Beyond that, the differences are less well marked, but there is a clear jump
from 485µs to 805µs at 512 KiB, which is probably the erase block's size. Given that the
card being tested is quite old, these are the sort of numbers you would expect.

Discard and TRIM
Usually, when you delete a file, only the modified directory node is written to storage,
while the sectors containing the file's contents remain unchanged. When the flash
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translation layer is in the disk controller, as with managed flash, it does not know that this
group of disk sectors no longer contains useful data and so it ends up copying stale data.
In the last few years, the addition of transactions that pass information about deleted sectors
down to the disk controller has improved this situation. The SCSI and SATA specifications
have a TRIM command, and MMC has a similar command named ERASE. In Linux, this
feature is known as discard.
To make use of discard, you need a storage device that supports it – most current eMMC
chips do – and a Linux device driver to match. You can check this by looking at the block
system queue parameters in /sys/block/<block device>/queue/.
The ones of interest are as follows:

discard_granularity: The size of the internal allocation unit of the device.
discard_max_bytes: The maximum number of bytes that can be discarded in one go.
discard_zeroes_data: If 1, discarded data will be set to 0.

If the device or the device driver do not support discard, these values will all be set to 0. As
an example, these are the parameters you will see from the 2 GiB eMMC chip on my
BeagleBone Black:

# grep -s "" /sys/block/mmcblk0/queue/discard_*

/sys/block/mmcblk0/queue/discard_granularity:2097152

/sys/block/mmcblk0/queue/discard_max_bytes:2199023255040

/sys/block/mmcblk0/queue/discard_zeroes_data:1

More information can be found in the kernel documentation file; that is,
Documentation/block/queue-sysfs.txt.
You can enable discard when mounting a filesystem by adding the -o discard option to the
mount command. Both ext4 and F2FS support it.

TIP
Make sure that the storage device supports discard before using the -o discard mount
option, as data loss can occur.
It is also possible to force discard from the command line independently of how the
partition is mounted using the fstrim command, which is part of the util-linux package.
Typically, you would run this command periodically to free up unused space. fstrim
operates on a mounted filesystem, so to trim the root filesystem, /, you would type the
following:

# fstrim -v /

/: 2061000704 bytes were trimmed

The preceding example uses the verbose option, -v, so that it prints out the number of bytes
that have been potentially freed up. In this case, 2,061,000,704 is the approximate amount
of free space in the filesystem, so it is the maximum amount of storage that could have been
trimmed.



Ext4
The extended filesystem, ext, has been the main filesystem for Linux desktops since 1992.
The current version, ext4, is very stable and well-tested, and has a journal that makes
recovering from an unscheduled shutdown fast and mostly painless. It is a good choice for
managed flash devices, and you will find that it is the preferred filesystem for Android
devices that have eMMC storage. If the device supports discard, you can mount with the -o
discard option.
To format and create an ext4 filesystem at runtime, you would type the following:

# mkfs.ext4 /dev/mmcblk0p2

# mount -t ext4 -o discard /dev/mmcblk0p1 /mnt

To create a filesystem image at build time, you can use the genext2fs utility, available from
http://genext2fs.sourceforge.net. In this example, I have specified the block size with -B and
the number of blocks in the image with -b:

$ genext2fs -B 1024 -b 10000 -d rootfs rootfs.ext4

genext2fs can make use of a device table to set the file permissions and ownership, as
described in Chapter 5, Building a Root Filesystem, with -D [file table].
As the name implies, this will actually generate an image in Ext2 format. You can upgrade
to Ext4 using tune2fs as follows (details of the command's options can be found in the
tune2fs(8) manual page):

$ tune2fs -j -J size=1 -O filetype,extents,uninit_bg,dir_index \

rootfs.ext4

$ e2fsck -pDf rootfs.ext4

Both the Yocto Project and Buildroot use exactly these steps when creating images in 
Ext4 format.
While a journal is an asset for devices that may power down without warning, it does add
extra write cycles to each write transaction, wearing out the flash memory. If the device is
battery powered, especially if the battery is not removable, the chances of an unscheduled
power down are small, so you may want to leave the journal out.
Even with journaling, filesystem corruption can occur on unexpected power loss. In many
devices, holding down the power button, unplugging the power cord, or pulling out the
battery can result in immediate shutdown. Due to the nature of buffered I/O, data being
written out to flash may be lost if the power goes out before the write is done flushing to
storage. For these reasons, it is good to run fsck non-interactively on a user partition to
check for and repair any filesystem corruption before mounting. Otherwise, the corruption
can compound over time until it becomes a serious issue.

F2FS

http://genext2fs.sourceforge.net/


The Flash-Friendly File System, known as F2FS, is a log-structured filesystem designed
for managed flash devices, especially eMMC chips and SD cards. It was written by
Samsung and was merged into mainline Linux in 3.8. It is marked as experimental,
indicating that it has not been extensively deployed yet, but it seems that some Android
devices are using it.
F2FS takes into account the page and erase block sizes, and then tries to align data on these
boundaries. The log format provides resilience in the face of power down and also provides
good write performance, in some tests showing a twofold improvement over ext4. There is
a good description of the design of F2FS in the kernel documentation in
Documentation/filesystems/f2fs.txt, and there are references at the end of this chapter,
in the Further reading section.
The mkfs.f2fs utility creates an empty F2FS filesystem with the -l label:

# mkfs.f2fs -l rootfs /dev/mmcblock0p1

# mount -t f2fs /dev/mmcblock0p1 /mnt

There isn't (yet) a tool you can use to create F2FS filesystem images offline.

FAT16/32
The old Microsoft filesystems, FAT16 and FAT32, continue to be important as a common
format understood by most operating systems. When you buy an SD card or USB flash
drive, it is almost certain to be formatted as FAT32 and, in some cases, the on-card
microcontroller is optimized for FAT32 access patterns. Also, some boot ROMs require a
FAT partition for the second-stage bootloader – the TI OMAP-based chips, for example.
However, FAT formats are definitely not suitable for storing critical files because they are
prone to corruption and make poor use of the storage space.
Linux supports FAT16 through the msdos filesystem and both FAT32 and FAT16 through
the vfat filesystem. To mount a device, say an SD card, on the second MMC hardware
adapter, you would type this:

# mount -t vfat /dev/mmcblock1p1 /mnt

IMPORTANT NOTE
In the past, there have been licensing issues with the vfat driver, which may (or may not)
infringe a patent held by Microsoft.
FAT32 has a limitation of 32 GiB on the device's size. Devices of a larger capacity may be
formatted using the Microsoft exFAT format, and it is a requirement for SDXC cards. There
is no kernel driver for exFAT, but it can be supported by means of a user space FUSE
driver. Since exFAT is proprietary to Microsoft, there are bound to be licensing implications
if you support this format on your device.
That does it for read-write filesystems geared toward managed flash. What about space-
saving read-only filesystems? The choice is simple: SquashFS.



Read-only compressed filesystems
Compressing data is useful if you don't have quite enough storage to fit everything in. Both
JFFS2 and UBIFS do on-the-fly data compression by default. However, if the files are
never going to be written, as is usually the case with the root filesystem, you can achieve
better compression ratios by using a read-only compressed filesystem. Linux supports
several of these: romfs, cramfs, and squashfs. The first two are obsolete now, so I will
only describe SquashFS.

SquashFS
The SquashFS filesystem was written by Phillip Lougher in 2002 as a replacement for
cramfs. It existed as a kernel patch for a long time, eventually being merged into mainline
Linux in version 2.6.29 in 2009. It is very easy to use: you create a filesystem image using
mksquashfs and install it to the flash memory:

$ mksquashfs rootfs rootfs.squashfs

The resulting filesystem is read-only, so there is no mechanism for modifying any of the
files at runtime. The only way to update a SquashFS filesystem is to erase the whole
partition and program in a new image.
SquashFS is not bad-block aware and so must be used with reliable flash memory such as
NOR flash. However, it can be used on NAND flash as long as you use UBI to create an
emulated, reliable MTD. You have to enable the CONFIG_MTD_UBI_BLOCK kernel
configuration, which will create a read-only MTD block device for each UBI volume. The
following diagram shows two MTD partitions, each with accompanying mtdblock devices.
The second partition is also used to create a UBI volume that is exposed as a third, reliable
mtdblock device, which you can use for any read-only filesystem that is not bad-block
aware:

Figure 9.5 – UBI volume



A read-only filesystem is great for immutable contents, but what about temporary files that
don't need to persist across reboots? This is where a RAM disk comes in handy.

Temporary filesystems
There are always some files that have a short lifetime or have no significance after a reboot.
Many such files are put into /tmp, and so it makes sense to keep these files from reaching
permanent storage.
The temporary filesystem, tmpfs, is ideal for this purpose. You can create a temporary
RAM-based filesystem by simply mounting tmpfs:

# mount -t tmpfs tmp_files /tmp

As with procfs and sysfs, there is no device node associated with tmpfs, so you have to
supply a placekeeper string, which is tmp_files in the preceding example.
The amount of memory used will grow and shrink as files are created and deleted. The
default maximum size is half the physical RAM. In most cases, it would be a disaster if
tmpfs grew to be that large, so it is a very good idea to cap it with the -o size parameter.
The parameter can be given in bytes, KiB (k), MiB (m), or GiB (g), like this, for example:

# mount -t tmpfs -o size=1m tmp_files /tmp

In addition to /tmp, some subdirectories of /var contain volatile data, and it is good
practice to use tmpfs for them as well, either by creating a separate filesystem for each or,
more economically, using symbolic links. Buildroot does this like so:

/var/cache -> /tmp

/var/lock -> /tmp

/var/log -> /tmp

/var/run -> /tmp

/var/spool -> /tmp

/var/tmp -> /tmp

In the Yocto Project, /run and /var/volatile are tmpfs mounts with symbolic links
pointing to them, as shown here:

/tmp -> /var/tmp

/var/lock -> /run/lock

/var/log -> /var/volatile/log

/var/run -> /run

/var/tmp -> /var/volatile/tmp

It is not uncommon to load the root filesystem into RAM on embedded Linux systems. That
way, any damage to its contents that may occur at runtime is not permanent. The root
filesystem does not need to reside on SquashFS or tmpfs to be protected, though; you just
need to make the root filesystem is read-only.

Making the root filesystem read-only



You need to make your target device able to survive unexpected events, including file
corruption, and still be able to boot and achieve at least a minimum level of functionality.
Making the root filesystem read-only is a key part of achieving this ambition because it
eliminates accidental overwrites. Making it read-only is easy: replace rw with ro on the
kernel command line or use an inherently read-only filesystem such as SquashFS. However,
you will find that there are a few files and directories that are traditionally writable:

/etc/resolv.conf: This file is written by network configuration scripts to record the
addresses of DNS name servers. The information is volatile, so you simply have to
make it a symlink to a temporary directory; for example, /etc/resolv.conf ->

/var/run/resolv.conf.
/etc/passwd: This file, along with /etc/group, /etc/shadow, and 
/etc/gshadow, stores user and group names and passwords. They need to 
be symbolically linked to an area of persistent storage.
/var/lib: Many applications expect to be able to write to this directory and to keep
permanent data here as well. One solution is to copy a base set of files to a tmpfs
filesystem at boot time and then bind mount /var/lib to the new location. You can do
this by putting a sequence of commands such as these into one of the boot scripts:

$ mkdir -p /var/volatile/lib

$ cp -a /var/lib/* /var/volatile/lib

$ mount --bind /var/volatile/lib /var/lib

/var/log: This is the place where syslog and other daemons keep their logs.
Generally, logging to flash memory is not desirable because of the many small write
cycles it generates. A simple solution is to mount /var/log using tmpfs, making all
log messages volatile. In the case of syslogd, BusyBox has a version that can log to a
circular ring buffer.

If you are using the Yocto Project, you can create a read-only root filesystem by adding
IMAGE_FEATURES = "read-only-rootfs" to conf/local.conf or to your image recipe.

Filesystem choices
So far, we have looked at the technology behind solid-state memory and at the many types
of filesystems. Now, it is time to summarize the options that are available. In most cases,
you will be able to divide your storage requirements into these three categories:

Permanent, read-write data: Runtime configuration, network parameters, passwords,
data logs, and user data
Permanent, read-only data: Programs, libraries, and configurations files that are
constant; for example, the root filesystem
Volatile data: Temporary storage; for example, /tmp

The choices for read-write storage are as follows:



NOR: UBIFS or JFFS2
NAND: UBIFS, JFFS2, or YAFFS2
eMMC: ext4 or F2FS

For read-only storage, you can use any of these, mounted with the ro attribute.
Additionally, if you want to save space, you could use SquashFS. Finally, for volatile
storage, there is only one choice: tmpfs.

Summary
Flash memory has been the storage technology of choice for embedded Linux from the
beginning, and over the years, Linux has gained very good support, from low-level drivers
up to flash-aware filesystems, with the latest being UBIFS.
As the rate at which new flash technologies are introduced increases, it is becoming harder
to keep pace with the changes at the high end. System designers are increasingly turning to
managed flash in the form of eMMC, to provide a stable hardware and software interface
that is independent of the memory chips inside. Embedded Linux developers 
are beginning to get to grips with these new chips. Support for TRIM in ext4 and F2FS is
well-established, and it is slowly finding its way into the chips themselves. Also, the
appearance of new filesystems that have been optimized to manage flash, such as F2FS, is a
welcome step forward.
However, the fact remains that flash memory is not the same as a hard disk drive. You have
to be careful when you're minimizing the number of filesystem writes – especially as the
higher density TLC chips may be able to support as few as 1,000 erase cycles.
In the next chapter, I will continue on the theme of storage options, as I consider different
ways to keep the software up to date on devices that may be deployed to remote locations.

Further reading
The following resources contain further information about the topics that were introduced
in this chapter:

XIP: The past, the present... the future?, by Vitaly Wool:
https://archive.fosdem.org/2007/slides/devrooms/embedded/Vitaly_Wool_XIP.pdf
General MTD documentation: http://www.linux-mtd.infradead.org/doc/general.html
Optimizing Linux with cheap flash drives, by Arnd Bergmann:
https://lwn.net/Articles/428584/
eMMC/SSD File System Tuning Methodology, Cogent Embedded, Inc.: 
https://elinux.org/images/b/b6/EMMC-
SSD_File_System_Tuning_Methodology_v1.0.pdf

https://archive.fosdem.org/2007/slides/devrooms/embedded/Vitaly_Wool_XIP.pdf
http://www.linux-mtd.infradead.org/doc/general.html
https://lwn.net/Articles/428584/
https://elinux.org/images/b/b6/EMMC-SSD_File_System_Tuning_Methodology_v1.0.pdf


Flash-Friendly File System (F2FS), by Joo-Young Hwang:
https://elinux.org/images/1/12/Elc2013_Hwang.pdf
An F2FS teardown, by Neil Brown: https://lwn.net/Articles/518988/

https://elinux.org/images/1/12/Elc2013_Hwang.pdf
https://lwn.net/Articles/518988/


Chapter 10: Updating Software in the Field
In previous chapters, we discussed various ways to build the software for a Linux device
and also how to create system images for various types of mass storage. When you go into
production, you just need to copy the system image to the flash memory, and it is ready to
be deployed. Now, I want to consider the life of the device beyond the first shipment.
As we move into the era of the Internet of Things, the devices that we create are very likely
to be connected together by the internet. At the same time, software is becoming
exponentially more complex. More software means more bugs. Connection to the internet
means those bugs can be exploited from afar. Consequentially, we have a common
requirement to be able to update software in the field. Software updates bring more
advantages than fixing bugs, however. They open the door to adding value to existing
hardware by improving system performance over time or enabling features.
In this chapter, we will cover the following topics:

From where do updates originate?
What to update
The basics of software updates
Types of update mechanism
OTA updates
Using Mender for local updates
Using Mender for OTA updates
Using balena for local updates

Technical requirements
To follow along with the examples, make sure you have the following:

A Linux-based host system with a minimum of 60 GB of available disk space
Yocto 3.1 (Dunfell) LTS release
Etcher for Linux
A microSD card reader and card
A Raspberry Pi 4
A 5V 3A USB-C power supply
A Wi-Fi router

Yocto is required for the Using Mender for local updates and Using Mender for OTA
updates sections of this chapter.



You should have already built the 3.1 (Dunfell) LTS release of Yocto for Chapter 6,
Selecting a Build System. If you have not, then refer to the Compatible Linux Distribution
and Build Host Packages sections of the Yocto Project Quick Build guide
(https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html)
before building Yocto on your Linux host according to the instructions from Chapter 6.
All of the code for this chapter can be found in the Chapter10 folder of the book's GitHub
repository: https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-
Third-Edition.

From where do updates originate?
There are many approaches to software updates. Broadly, I characterize them as 
the following:

Local updates, often performed by a technician who carries the update on a 
portable medium such as a USB flash drive or an SD card and has to access each
system individually
Remote updates, where the update is initiated by the user or a technician locally, but it
is downloaded from a remote server
Over-the-air (OTA) updates, where the update is pushed and managed entirely
remotely, without any need for local input

I will begin by describing several approaches to software updates, and then I will show an
example using Mender (https://mender.io).

What to update
Embedded Linux devices are very diverse in their design and implementation. However,
they all have these basic components:

Bootloader
Kernel
Root filesystem
System applications
Device-specific data

Some components are harder to update than others, as summarized in this diagram:

https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition
https://mender.io/


Figure 10.1 – Components of an update

Let's look at each component in turn.

Bootloader
The bootloader is the first piece of code to run when the processor is powered up. The way
the processor locates the bootloader is very device-specific, but in most cases, there is only
one such location, and so there can only be one bootloader. If there is no backup, updating
the bootloader is risky: what happens if the system powers down midway? Consequently,
most update solutions leave the bootloader alone. This is not a big problem, because the
bootloader only runs for a short time at power-on and is not normally a great source of
runtime bugs.

Kernel
The Linux kernel is a critical component that will certainly need updating from time to
time.
There are several parts to the kernel:

A binary image loaded by the bootloader, often stored in the root filesystem.
Many devices also have a Device Tree Binary (DTB) that describes hardware to the
kernel, and so has to be updated in tandem. The DTB is usually stored alongside the
kernel binary.
There may be kernel modules in the root filesystem.



The kernel and DTB may be stored in the root filesystem, so long as the bootloader has the
ability to read that filesystem format, or it may be in a dedicated partition. In either case, it
is possible and safer to have redundant copies.

Root filesystem
The root filesystem contains the essential system libraries, utilities, and scripts needed to
make the system work. It is very desirable to be able to replace and upgrade all of these.
The mechanism depends on the filesystem implementation.
Common formats for embedded root file systems are the following:

Ramdisk, loaded from raw flash memory or a disk image at boot. To update it, you just
need to overwrite the ramdisk image and reboot.
Read-only compressed filesystems, such as squashfs, stored in a flash partition. Since
these types of filesystem do not implement a write function, the only way to update
them is to write a complete filesystem image to the partition.
Normal filesystem types: For raw flash memory, JFFS2 and UBIFS formats are
common, and for managed flash memory, such as eMMC and SD cards, the format is
likely to be ext4 or F2FS. Since these are writable at runtime, it is possible to update
them file by file.

System applications
The system applications are the main payload of the device; they implement its primary
function. As such, they are likely to be updated frequently to fix bugs and to add features.
They may be bundled with the root filesystem, but it is also common for them to be 
placed in a separate filesystem to make updating easier and to maintain separation between
the system files, which are usually open source, and the application files, which are often
proprietary.

Device-specific data
This is the combination of files that are modified at runtime and includes configuration
settings, logs, user-supplied data, and the like. It is not often that they need to be updated,
but they do need to be preserved during an update. Such data needs to be stored in a
partition of its own.

Components that need to be updated



In summary, then, an update may include new versions of the kernel, root filesystem, and
system applications. The device will have other partitions that should not be disturbed by an
update, as is the case with the device runtime data.
The cost of software updates failing can be catastrophic. Secure software updates are also a
major concern within both enterprise and home internet environments. Before we can ship
any hardware, we need to be able to update the software with confidence.

The basics of software updates
Updating software seems, at first sight, to be a simple task: you just need to overwrite some
files with new copies. But then your engineer's training kicks in as you begin to realize all
the things that could go wrong. What if the power goes down during the update? What if a
bug, not seen while testing the update, renders a percentage of the devices unbootable?
What if a third party sends a fake update that enlists your device as part of a botnet? At the
very least, the software update mechanism must be:

Robust, so that an update does not render the device unusable
Fail-safe, so that there is a fallback mode if all else fails
Secure, to prevent the device from being hijacked by people installing 
unauthorized updates

In other words, we need a system that is not susceptible to Murphy's law, which states that
if something can go wrong, then it will go wrong, eventually. Some of these problems are
non-trivial, however. Deploying software to a device in the field is different from deploying
software to the cloud. Embedded Linux systems need to detect and respond to mishaps like
kernel panics or boot loops without any human intervention.

Making updates robust
You might think that the problem of updating Linux systems was solved a long time ago −
we all have Linux desktops that we update regularly (don't we?). Also, there are vast
numbers of Linux servers running in data centers that are similarly kept up to date.
However, there is a difference between a server and a device. The former operates in a
protected environment. It is unlikely to suffer a sudden loss of power or network
connectivity. In the unlikely event that an update does fail, it is always possible to get
access to the server and use external mechanisms to repeat the install.
Devices, on the other hand, are often deployed at remote sites with intermittent power and a
poor network connection, which makes it much more likely that an update will be
interrupted. Then, consider that it may be very expensive to get access to a device to take
remedial action over a failed update if, for example, the device is an environmental
monitoring station at the top of a mountain or controlling the valves of an oil well at the



bottom of the sea. In consequence, it is much more important for embedded devices to have
a robust update mechanism that will not result in the system becoming unusable.
The key word here is atomicity. The update as a whole must be atomic: there should be no
stage at which part of the system is updated but no other parts. There must be a single,
uninterruptible change to the system that switches to the new version of the software.
This removes the most obvious update mechanism from consideration: that of simply
updating individual files, for example, by extracting an archive over parts of the filesystem.
There is just no way to ensure that there will be a consistent set of files if the system is reset
during the update. Even using a package manager such as apt, yum, or zypper does not
help. If you look at the internals of all these package managers, you will see that they do
indeed work by extracting an archive over the filesystem and running scripts to configure
the package both before and after the update. Package managers are fine for the protected
world of the data center, or even your desktop, but not for a device.
To achieve atomicity, the update must be installed alongside the running system, and then a
switch is thrown to move from the old to the new. In later sections, we will describe two
different approaches to achieving atomicity. The first is to have two copies of the root
filesystem and other major components. One is live, while the other can receive updates.
When the update is complete, the switch is thrown so that on reboot, the bootloader selects
the updated copy. This is known as a symmetric image update, or an A/B image update.
A variant of this theme is to use a special recovery mode operating system that is
responsible for updating the main operating system. The guarantee of atomicity is shared
between the bootloader and the recovery operating system. This is known as an
asymmetric image update. It is the approach taken in Android prior to the Nougat 7.x
version.
The second approach is to have two or more copies of the root filesystem in different
subdirectories of the system partition, and then use chroot(8) at boot time to select one of
them. Once Linux is running, the update client can install updates into the other root
filesystem, and then when everything is complete and checked, it can throw the switch and
reboot. This is known as an atomic file update and is exemplified by OSTree.

Making updates fail-safe
The next problem to consider is that of recovering from an update that was installed
correctly but that contains code that stops the system from booting. Ideally, we want the
system to detect this case and to revert to a previous working image.
There are several failure modes that can lead to a non-operational system. The first is a
kernel panic, caused, for example, by a bug in a kernel device driver, or being unable to run
the init program. A sensible place to start is by configuring the kernel to reboot a number
of seconds after a panic. You can do this either when you build the kernel by setting
CONFIG_PANIC_TIMEOUT or by setting the kernel command line to panic. For example, to
reboot 5 seconds after a panic, you would add panic=5 to the kernel command line.



You may want to go further and configure the kernel to panic on an Oops. Remember that
an Oops is generated when the kernel encounters a fatal error. In some cases, it will be able
to recover from the error, in other cases not, but in all cases, something has gone wrong and
the system is not working as it should. To enable panic on Oops in the kernel configuration,
set CONFIG_PANIC_ON_OOPS=y or, on the kernel command line, oops=panic.
A second failure mode occurs when the kernel launches init successfully but for some
reason, the main application fails to run. For this, you need a watchdog. A watchdog is a
hardware or software timer that restarts the system if the timer is not reset before it expires.
If you are using systemd, you can use the built-in watchdog function, which I'll describe in
Chapter 13, Starting Up – The init Program. If not, you may want to enable the watchdog
support built into Linux, as described in the kernel source code in
Documentation/watchdog.
Both failures result in boot loops: either a kernel panic or a watchdog timeout causes the
system to reboot. If the problem is persistent, the system will reboot continually. To break
out of the boot loop, we need some code in the bootloader to detect the case and to revert to
the previous, known good, version. A typical approach is to use a boot count that is
incremented by the bootloader on each boot, and that is reset to zero in user space once the
system is up and running. If the system enters a boot loop, the counter is not reset and so
continues to increase. Then, the bootloader is configured to take remedial action if the
counter exceeds a threshold.
In U-Boot, this is handled by three variables:

bootcount: This variable is incremented each time the processor boots.
bootlimit: If bootcount exceeds the bootlimit, U-Boot runs the commands in
altbootcmd instead of bootcmd.
altbootcmd: This contains the alternative boot commands, for example, to roll back to
a previous version of the software or to start the recovery-mode operating system.

For this to work, there must be a way for a user space program to reset the boot count. We
can do that using U-Boot utilities that allow the U-Boot environment to be accessed at
runtime:

fw_printenv: Prints the value of a U-Boot variable
fw_setenv: Sets the value of a U-Boot variable

These two commands need to know where the U-Boot environment block is stored, for
which there is a configuration file in /etc/fw_env.config. For example, if the U-Boot
environment is stored at offset 0x800000 from the start of the eMMC memory, with a
backup copy at 0x1000000, then the configuration would look like this:

# cat /etc/fw_env.config

/dev/mmcblk0 0x800000 0x40000

/dev/mmcblk0 0x1000000 0x40000

There is one final thing to cover in this section. Incrementing the boot count on each boot
and then resetting it when the application begins to run leads to unnecessary writes to the



environment block, wearing out the flash memory and slowing down system initialization.
To prevent having to do this on all reboots, U-Boot has a further variable named
upgrade_available. If upgrade_available is 0, then bootcount is not incremented.
upgrade_available is set to 1 after an update has been installed so that the boot count
protection is in use only when it is needed.

Making updates secure
The final problem relates to the potential misuse of the update mechanism itself. Your
prime intention when implementing an update mechanism is to provide a reliable automated
or semi-automated method to install security patches and new features. However, others
may use the same mechanism to install unauthorized versions of software and so hijack the
device. We need to look at how we can ensure that this cannot happen.
The biggest vulnerability is that of a fake remote update. To prevent this, we need to
authenticate the update server before starting the download. We also need a secure transfer
channel, such as HTTPS, to guard against tampering with the download stream. I will
return to this when describing OTA updates later on.
There is also the question of the authenticity of updates supplied locally. One way to detect
a bogus update is to use a secure boot protocol in the bootloader. If the kernel image is
signed at the factory with a digital key, the bootloader can check the key before it loads the
kernel and refuses to load it if the keys do not match. So long as the keys are kept private
by the manufacturer, it will not be possible to load a kernel that is not authorized. U-Boot
implements such a mechanism, which is described in the U-Boot source code in
doc/uImage.FIT/verified-boot.txt.

IMPORTANT NOTE
Secure boot: good or bad?
If I have purchased a device that has a software update feature, then I am trusting the
vendor of that device to deliver useful updates. I definitely do not want a malicious third
party to install software without my knowledge. But should I be allowed to install software
myself? If I own the device outright, should I not be entitled to modify it, including loading
new software? Recall the TiVo set-top box, which ultimately led to the creation of the GPL
v3 license. Remember also the Linksys WRT54G Wi-Fi router: when access to the hardware
became easy, it spawned a whole new industry, including the OpenWrt project. See, for
example, https://www.wi-fiplanet.com/tutorials/article.php/3562391 for more details. This
is a complex issue that sits at the crossroads between freedom and control. It is my opinion
that some device manufacturers use security as an excuse to protect their, sometimes
shoddy, software.
Now that we know what is required, how do we go about updating software on embedded
Linux systems?

https://www.wi-fiplanet.com/tutorials/article.php/3562391


Types of update mechanism
In this section, I will describe three approaches to applying software updates: symmetric, or
A/B, image update; asymmetric image update, also known as recovery mode update; and
finally, atomic file update.

Symmetric image update
In this scheme, there are two copies of the operating system, each comprising the Linux
kernel, root filesystem, and system applications. They are labeled as A and B in the
following diagram:

Figure 10.2 – symmetric image update

Symmetric image updates work as follows:
1. The bootloader has a flag that indicates which image it should load. Initially, the flag is

set to A, so the bootloader loads OS image A.
2. To install an update, the updater application, which is part of the operating system,

overwrites OS image B.
3. When complete, the updater changes the boot flag to B and reboots.
4. Now the bootloader will load the new operating system.
5. When a further update is installed, the updater overwrites image A and changes the

boot flag to A, and so you ping-pong between the two copies.
6. If an update fails before the boot flag is changed, the bootloader continues to load the

good operating system.

There are several open source projects that implement symmetric image update. One is the
Mender client operating in standalone mode, which I will describe later, in the section on
Using Mender for local updates. Another is SWUpdate
(https://github.com/sbabic/swupdate). SWUpdate can receive multiple image updates in a

https://github.com/sbabic/swupdate


CPIO format package and then deploy those updates to different parts of the system. It
allows you to write plugins in the Lua language to do custom processing. It has filesystem
support for raw flash memory that is accessed as MTD flash partitions, for storage
organized into UBI volumes, and for SD/eMMC storage with a disk partition table. A third
example is RAUC, the Robust Auto-Update Controller, (https://github.com/rauc/rauc). It
too has support for raw flash storage, UBI volumes, and SD/eMMC devices. The images
can be signed and verified using OpenSSL keys. A fourth example is fwup
(https://github.com/fwup-home/fwup) by long-time Buildroot contributor Frank Hunleth.
There are some drawbacks to this scheme. One is that by updating an entire filesystem
image, the size of the update package is large, which can put a strain on the network
infrastructure connecting the devices. This can be mitigated by sending only the filesystem
blocks that have changed by performing a binary diff of the new filesystem with the
previous version. The commercial edition of Mender has support for such delta updates and
delta updates are still a beta feature in RAUC and fwup at the time of writing.
A second drawback is the need to keep storage space for a redundant copy of the root
filesystem and other components. If the root filesystem is the largest component, it comes
close to doubling the amount of flash memory you need to fit. It is for this reason that the
asymmetric update scheme is used, which I describe next.

Asymmetric image update
You can reduce storage requirements by keeping a minimal recovery operating system
purely for updating the main one, as shown here:

Figure 10.3 – Asymmetric image update

To install an asymmetric update, do the following:
1. Set the boot flag to point to the recovery OS and reboot.

https://github.com/rauc/rauc
https://github.com/fwup-home/fwup


2. Once the recovery OS is running, it can stream updates to the main operating system
image.

3. If the update is interrupted, the bootloader will again boot into the recovery OS, which
can resume the update.

4. Only when the update is complete and verified will the recovery OS clear the boot flag
and reboot again, this time loading the new main operating system.

5. The fallback in the case of a correct but buggy update is to drop the system back into
recovery mode, which can attempt remedial actions, possibly by requesting an earlier
update version.

The recovery OS is usually a lot smaller than the main operating system, maybe only a few
megabytes, and so the storage overhead is not great. As a matter of interest, this is the
scheme that was adopted by Android prior to the Nougat release. For open source
implementations of asymmetric image update, you could consider SWUpdate or RAUC,
both of which I mentioned in the previous section.
A major drawback of this scheme is that while the recovery OS is running, the device is not
operational. Such a scheme also does not allow for updates of the recovery OS itself. That
would require something like A/B image updates, thus defeating the whole purpose.

Atomic file updates
Another approach is to have redundant copies of a root filesystem present in multiple
directories of a single filesystem and then use the chroot(8) command to choose one of
them at boot time. This allows one directory tree to be updated while another is mounted as
the root directory. Furthermore, rather than making copies of files that have not changed
between versions of the root filesystem, you could use links. That would save a lot of disk
space and reduce the amount of data to be downloaded in an update package. These are the
basic ideas behind atomic file update.

IMPORTANT NOTE
The chroot command runs a program in an existing directory. The program sees this
directory as its root directory, and so cannot access any files or directories at a higher
level. It is often used to run a program in a constrained environment, which is sometimes
referred to as chroot jail.
The OSTree project (https://ostree.readthedocs.org/en/latest/), now renamed libOSTree, is
the most popular implementation of this idea. OSTree started around 2011 as a means of
deploying updates to the GNOME desktop developers, and to improve their continuous
integration testing (https://wiki.gnome.org/Projects/GnomeContinuous). It has since been
adopted as an update solution for embedded devices. It is one of the update methods
available in Automotive Grade Linux (AGL), and it is available in the Yocto Project
through the meta-update layer, which is supported by Advanced Telematic Systems
(ATS).

https://ostree.readthedocs.org/en/latest/
https://wiki.gnome.org/Projects/GnomeContinuous


With OSTree, the files are stored on the target in the /ostree/repo/objects directory.
They are given names such that several versions of the same file can exist in the repository.
Then, a given set of files are linked into a deployment directory, which has a name such as
/ostree/deploy/os/29ff9…/. This is referred to as checking out, since it has some
similarities to the way a branch is checked out of a Git repository. Each deploy directory
contains the files that make up a root filesystem. There can be any number of them, but by
default, there are only two. For example, here are two deploy directories, each with links
back into the repo directory:

/ostree/repo/objects/...

/ostree/deploy/os/a3c83.../

/usr/bin/bash

/usr/bin/echo

/ostree/deploy/os/29ff9.../

/usr/bin/bash

/usr/bin/echo

To boot from an OSTree directory:
1. The bootloader boots the kernel with an initramfs, passing on the kernel command

line the path of the deployment to use:
bootargs=ostree=/ostree/deploy/os/deploy/29ff9...

2. The initramfs contains an init program, ostree-init, which reads the command
line and executes the chroot to the path given.

3. When a system update is installed, the files that have changed are downloaded into the
repo directory by the OSTree install agent.

4. When complete, a new deploy directory is created, with links to the collection of files
that will make up the new root filesystem. Some of these will be new files, some will
be the same as before.

5. Finally, the OSTree install agent will change the bootloader's boot flag so that on the
next reboot, it will chroot to the new deploy directory.

6. The bootloader implements the check on the boot count and falls back to the previous
root if a boot loop is detected.

Even though a developer can operate the updater or install the client manually on a target
device, eventually, software updates need to happen automatically over the air.

OTA updates
Updating over-the-air (OTA) means having the ability to push software to a device or
group of devices via a network, usually without any end user interaction with the device.
For this to happen, we need a central server to control the update process and a protocol for
downloading the update to the update client. In a typical implementation, the client polls the
update server from time to time to check if there are any updates pending. The polling



interval needs to be long enough that the poll traffic does not take a significant portion of
the network bandwidth, but short enough that the updates can be delivered in a timely
fashion. An interval of tens of minutes to several hours is often a good compromise. The
poll messages from the device contain some sort of unique identifier, such as a serial
number or MAC address, and the current software version. From this, the update server can
see if an update is needed. The poll messages may also contain other status information,
such as uptime, environmental parameters, or anything that would be useful for central
management of the devices.
The update server is usually linked to a management system that will assign new versions
of software to the various populations of devices under its control. If the device population
is large, it may send updates in batches to avoid overloading the network. There will be
some sort of status display where the current state of the devices can be shown, and
problems highlighted.
Of course, the update mechanism must be secure so that fake updates cannot be sent to the
end devices. This involves the client and server being able to authenticate each other by an
exchange of certificates. Then the client can validate that the packages downloaded are
signed by the key that is expected.
Here are three examples of open source projects that you can use for OTA updates:

Mender in managed mode
balena
Eclipse hawkBit (https://github.com/eclipse/hawkbit) in conjunction with an updater
client such as SWUpdate or RAUC

We will walk through the first two projects in detail, starting with Mender.

Using Mender for local updates
So much for the theory. In the next two sections of this chapter, I want to demonstrate how
the principles I have talked about so far work in practice. For these examples, I will use
Mender. Mender uses a symmetric A/B image update mechanism, with a fallback in the
event of a failed update. It can operate in standalone mode for local updates, or in managed
mode for OTA updates. I will begin with standalone mode.
Mender is written and supported by mender.io (https://mender.io). There is much more
information about the software in the documentation section of the website. I will not delve
deeply into the configuration of the software here since my aim is to illustrate the principles
of software updates. Let's begin with the Mender client.

Building the Mender client

https://github.com/eclipse/hawkbit
https://mender.io/


The Mender client is available as a Yocto meta layer. These examples use the Dunfell
release of the Yocto Project, which is the same one that we used in Chapter 6, Selecting a
Build System.
Start by fetching the meta-mender layer as follows:

$ git clone -b dunfell git://github.com/mendersoftware/meta-mender

You want to navigate one level above the poky directory before cloning the meta-mender
layer so that the two directories are located next to each other at the same level.
The Mender client requires some changes to the configuration of U-Boot to handle the boot
flag and boot count variables. The stock Mender client layer has sub-layers for sample
implementations of this U-Boot integration that we can use straight out of the box, such as
metameta-mender-qemu and meta-mender-raspberrypi. We will use QEMU.
The next step is to create a build directory and add the layers for this configuration:

$ source poky/oe-init-build-env build-mender-qemu

$ bitbake-layers add-layer ../meta-openembedded/meta-oe

$ bitbake-layers add-layer ../meta-mender/meta-mender-core

$ bitbake-layers add-layer ../meta-mender/meta-mender-demo

$ bitbake-layers add-layer ../meta-mender/meta-mender-qemu

Then, we need to set up the environment by adding some settings to conf/local.conf:
1 MENDER_ARTIFACT_NAME = "release-1"

2 INHERIT += "mender-full"

3 MACHINE = "vexpress-qemu"

4 INIT_MANAGER = "systemd"

5 IMAGE_FSTYPES = "ext4"

Line 2 includes a BitBake class, named mender-full, which is responsible for the special
processing of the image required to create the A/B image format. Line 3 selects a machine
named vexpress-qemu, which uses QEMU to emulate an Arm Versatile Express board,
rather than the Versatile PB that is the default in the Yocto Project. Line 4 selects systemd
as the init daemon in place of the default System V init. I describe init daemons in
more detail in Chapter 13, Starting Up – The init Program. Line 5 causes the root
filesystem images to be generated in ext4 format.
Now we can build an image:

$ bitbake core-image-full-cmdline

As usual, the results of the build are in tmp/deploy/images/vexpress-qemu. You will
notice some new things in here compared to the Yocto Project builds we have done in the
past. There is a file named core-image-full-cmdline-vexpress-qemu-grub-

[timestamp].mender, and another similarly named file that ends with .uefiimg. 
The .mender file is required for the next subsection: Installing an update. The .uefiimg
file is created using a tool from the Yocto Project known as wic. The output is an image 
that contains a partition table and that is ready to be copied directly to an SD card or 
eMMC chip.



We can run the QEMU target using the script provided by the Mender layer, which will first
boot U-Boot and then load the Linux kernel:

$ ../meta-mender/meta-mender-qemu/scripts/mender-qemu

[…]

[  OK  ] Started Mender OTA update service.

[  OK  ] Started Mender Connect service.

[  OK  ] Started NFS status monitor for NFSv2/3 locking..

[  OK  ] Started Respond to IPv6 Node Information Queries.

[  OK  ] Started Network Router Discovery Daemon.

[  OK  ] Reached target Multi-User System.

         Starting Update UTMP about System Runlevel Changes...

Poky (Yocto Project Reference Distro) 3.1.6 vexpress-qemu ttyAMA0

vexpress-qemu login:

If instead of a login prompt you see an error like:
mender-qemu: 117: qemu-system-arm: not found

Then install qemu-system-arm on your system and rerun the script:
$ sudo apt install qemu-system-arm

Log on as root with no password. Looking at the layout of the partitions on the target, we
can see this:

# fdisk -l /dev/mmcblk0

Disk /dev/mmcblk0: 608 MiB, 637534208 bytes, 1245184 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: gpt

Disk identifier: 15F2C2E6-D574-4A14-A5F4-4D571185EE9D

Device          Start     End Sectors  Size Type

/dev/mmcblk0p1  16384   49151   32768   16M EFI System

/dev/mmcblk0p2  49152  507903  458752  224M Linux filesystem

/dev/mmcblk0p3 507904  966655  458752  224M Linux filesystem

/dev/mmcblk0p4 966656 1245150  278495  136M Linux filesystem

There are four partitions in all:
Partition 1: This contains the U-Boot boot files.
Partitions 2 and 3: These contain the A/B root filesystems: at this stage, they 
are identical.
Partition 4: This is just an extension partition that contains the remaining partitions.

Running the mount command shows that the second partition is being used as the root
filesystem, leaving the third to receive updates:

# mount

/dev/mmcblk0p2 on / type ext4 (rw,relatime)

[…]



With the Mender client now on board, we can begin installing updates.

Installing an update
Now we want to make a change to the root filesystem and then install it as an update:

1. Open another shell and put yourself back in the working build directory:
$ source poky/oe-init-build-env build-mender-qemu

2. Make a copy of the image we just built. This will be the live image that we are going
to update:

$ cd tmp/deploy/images/vexpress-qemu

$ cp core-image-full-cmdline-vexpress-qemu-grub.uefiimg \

core-image-live-vexpress-qemu-grub.uefiimg

$ cd -

If we don't do this, the QEMU script will just load the latest image generated
by BitBake, including updates, which defeats the object of the
demonstration.

3. Next, change the hostname of the target, which will be easy to see when it is installed.
To do this, edit conf/local.conf and add this line:

hostname_pn-base-files = "vexpress-qemu-release2"

4. Now we can build the image in the same way as before:
$ bitbake core-image-full-cmdline

This time we are not interested in the .uefiimg file, which contains a
complete new image. Instead, we want to take only the new root filesystem,
which is in core-image-full-cmdline-vexpress-qemu-grub.mender. The
.mender file is in a format that is recognized by the Mender client. The
.mender file format consists of version information, a header, and the root
filesystem image put together in a compressed .tar archive.

5. The next step is to deploy the new artifact to the target, initiating the update locally on
the device, but receiving the update from a server. Stop the emulator you started in the
previous terminal session by entering Ctrl + A then x to terminate it. Then boot QEMU
again with the newly copied image:

$ ../meta-mender/meta-mender-qemu/scripts/mender-qemu \

core-image-live

6. Check that the network is configured, with QEMU at 10.0.2.15, and the host at
10.0.2.2:

# ping 10.0.2.2

PING 10.0.2.2 (10.0.2.2) 56(84) bytes of data.

64 bytes from 10.0.2.2: icmp_seq=1 ttl=255 time=0.286 ms

^C

--- 10.0.2.2 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms



rtt min/avg/max/mdev = 0.286/0.286/0.286/0.000 ms

7. Now, in another terminal session, start a web server on the host that can serve up the
update:

$ cd tmp/deploy/images/vexpress-qemu

$ python3 -m http.server

Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...

It is listening on port 8000. When you are done with the web server, type
Ctrl + C to terminate it.

8. Back on the target, issue this command to get the update:
# mender --log-level info install \

> http://10.0.2.2:8000/core-image-full-cmdline-vexpress-qemu-
grub.mender

INFO[0751] Wrote 234881024/234881024 bytes to the inactive
partition

INFO[0751] Enabling partition with new image installed to be a
boot candidate: 3

The update was written to the third partition, /dev/mmcblk0p3, while our
root filesystem is still on partition 2, mmcblk0p2.

9. Reboot QEMU by entering reboot from the QEMU command line. Note that now the
root filesystem is mounted on partition 3, and that the hostname has changed:

# mount

/dev/mmcblk0p3 on / type ext4 (rw,relatime)

[…]

# hostname

vexpress-qemu-release2

Success!
10. There is one more thing to do. We need to consider the issue of boot loops. Using

fw_printenv to look at the U-Boot variables, we see the following:
# fw_printenv upgrade_available

upgrade_available=1

# fw_printenv bootcount

bootcount=1

If the system reboots without clearing bootcount, U-Boot should detect it and fall back to
the previous installation.
Let's test U-Boot's fallback behavior:

1. Reboot the target right away.
2. When the target comes up again, we see that U-Boot has reverted to the 

previous installation:
# mount

/dev/mmcblk0p2 on / type ext4 (rw,relatime)

[…]



# hostname

vexpress-qemu

3. Now, let's repeat the update procedure:
# mender --log-level info install \

> http://10.0.2.2:8000/core-image-full-cmdline-vexpress-qemu-
grub.mender

# reboot

4. But this time, after the reboot, commit the change:
# mender commit

[…]

# fw_printenv upgrade_available

upgrade_available=0

# fw_printenv bootcount        

bootcount=1

5. Once upgrade_available is cleared, U-Boot will no longer check bootcount, and so
the device will continue to mount this updated root filesystem. When a further update
is loaded, the Mender client will clear bootcount and set upgrade_available once
again.

This example uses the Mender client from the command line to initiate an update locally.
The update itself came from a server but could just as easily have been provided on a USB
flash drive or an SD card. In place of Mender, we could have used the other image update
clients mentioned: SWUpdate or RAUC. They each have their advantages, but the basic
technique is the same.
The next stage is to see how OTA updates work in practice.

Using Mender for OTA updates
Once again, we will be using the Mender client on the device, but this time operating it in
managed mode, and in addition, we will be configuring a server to deploy the update so that
no local interaction is needed. Mender provides an open source server for this. For
documentation on how to set up this demo server, see https://docs.mender.io/2.4/getting-
started/on-premise-installation.
The installation requires Docker Engine version 19.03 or later to be installed. Refer to the
Docker website at https://docs.docker.com/engine/installation. It also requires Docker
Compose version 1.25 or later as described here: https://docs.docker.com/compose/install/.
To verify which versions of Docker and Docker Compose you have on your system, use
these commands:

$ docker --version

Docker version 19.03.8, build afacb8b7f0

$ docker-compose --version

docker-compose version 1.25.0, build unknown

https://docs.mender.io/2.4/getting-started/on-premise-installation
https://docs.docker.com/engine/installation
https://docs.docker.com/compose/install/


The Mender server also requires a command-line JSON parser called jq:
$ sudo apt install jq

Once all three are installed, then install the Mender integration environment as shown:
$ curl -L \

https://github.com/mendersoftware/integration/archive/2.5.1.tar.gz | tar
xz

$ cd integration-2.5.1

$ ./demo up

Starting the Mender demo environment...

[…]

Creating a new user...

****************************************

Username: mender-demo@example.com

Login password: D53444451DB6

****************************************

Please keep the password available, it will not be cached by the login
script.

Mender demo server ready and running in the background. Copy credentials
above and log in at https://localhost

Press Enter to show the logs.

Press Ctrl-C to stop the backend and quit.

When you run the ./demo up script, you will see that it downloads several hundreds of
megabytes of Docker images, which may take some time, depending on your internet
connection speed. After a while, you will see that it creates a new demo user and password.
This means that the server is up and running.
With the Mender web interface now running on https://localhost/, point a web browser at
that URL and accept the certificate warning that pops up. The warning appears because the
web service is using a self-signed certificate that the browser will not recognize. Enter the
username and password generated by the Mender server into the login page.
We now need to make a change to the configuration of the target so that it will poll our
local server for updates. For this demonstration, we map the docker.mender.io and
s3.docker.mender.io server URLs to the address localhost by appending a line to the
hosts file. To make this change with the Yocto Project, do the following:

1. First, navigate one level above the directory where you cloned Yocto.
2. Next, create a layer with a file that appends to the recipe that creates the hosts file,

which is recipes-core/base-files/base-files_3.0.14.bbappend. There is already
a suitable layer in MELP/Chapter10/meta-ota that you can copy:

$ cp -a melp3/Chapter10/meta-ota .

3. Source the working build directory:
$ source poky/oe-init-build-env build-mender-qemu

4. Add the meta-ota layer:
$ bitbake-layers add-layer ../meta-ota



Your layer structure should now contain eight layers including meta-oe,
meta-mender-core, meta-mender-demo, meta-mender-qemu, and meta-ota.

5. Build the new image using the following command:
$ bitbake core-image-full-cmdline

6. Then make a copy. This will become our live image for this section:
$ cd tmp/deploy/images/vexpress-qemu

$ cp core-image-full-cmdline-vexpress-qemu-grub.uefiimg \

core-image-live-ota-vexpress-qemu-grub.uefiimg

$ cd -

7. Boot up the live image:
$ ../meta-mender/meta-mender-qemu/scripts/mender-qemu \

core-image-live-ota

After a few seconds, you will see a new device appear on the Dashboard of
the web interface. This happens so quickly because, for the purposes of
demonstrating the system, the Mender client has been configured to poll the
server every 5 seconds. A much longer polling interval would be used in
production: 30 minutes is suggested.

8. See how this polling interval is configured by looking at the
/etc/mender/mender.conf file on the target:

# cat /etc/mender/mender.conf

{

    "InventoryPollIntervalSeconds": 5,

    "RetryPollIntervalSeconds": 30,

    "ServerURL": "https://docker.mender.io",

    "TenantToken": "dummy",

    "UpdatePollIntervalSeconds": 5

}

Notice the server URL in there as well.
9. Back in the web UI, click on the green check mark to authorize the new device:



Figure 10.4 – Accept device

10. Then click on the entry for the device to see the details.

Now, we can once again create an update and deploy it – this time, OTA:
1. Update the following line in conf/local.conf as shown:

MENDER_ARTIFACT_NAME = "OTA-update1"

2. Build the image once again:



$ bitbake core-image-full-cmdline

This will produce a new core-image-full-cmdline-vexpress-qemu-

grub.mender file in tmp/deploy/images/vexpress-qemu.
3. Import this into the web interface by opening the Releases tab and clicking on the

purple Upload button in the lower-left corner.
4. Browse for the core-image-full-cmdline-vexpress-qemu-grub.mender file in

tmp/deploy/images/vexpress-qemu and upload it:



Figure 10.5 – Upload an Artifact

The Mender server should copy the file into the server data store, and a new artifact with
the name OTA-update1 should appear under Releases.
To deploy the update to our QEMU device, do the following:

1. Click on the Devices tab and select the device.



2. Click on the Create a Deployment for this Device option at the bottom right of the
device information.

3. Select the OTA-update1 artifact from the Releases page and click on the Create
Deployment with this Release button:

Figure 10.6 – Create a deployment



4. Click on the Next button in the Select target software and devices step of 
Create a deployment.

5. Click on the Create button in the Review and create step of Create a deployment to
start the deployment.

6. The deployment should shortly transition from Pending to In progress:



Figure 10.7 – In progress

7. After about 13 minutes, the Mender client should have written the update to the spare
filesystem image, and then QEMU will reboot and commit the update. The web UI
should then report Finished, and now the client is running OTA-update1:

Figure 10.8 – Device updated successfully



Mender is neat and is used in many commercial products, but sometimes we just want to
deploy a software project to a small fleet of popular dev boards as quickly as possible.

TIP
After a few experiments with the Mender server, you may want to clear the state and start
all over again. You can do that with these two commands, entered in the
integration2.5.1/ directory:
./demo down

./demo up

Rapid application development is where balena shines. We will spend the rest of this
chapter using balena to deploy a simple Python application to a Raspberry Pi 4.

Using balena for local updates
Balena uses Docker containers to deploy software updates. Devices run balenaOS, a Yocto-
based Linux distribution that comes with balenaEngine, balena's Docker-compatible
container engine. OTA updates occur automatically by way of releases pushed from
balenaCloud, a hosted service for managing fleets of devices. Balena can also operate in
local mode so that updates originate from a server running on your local host machine
rather than the cloud. We will stick to local mode for the following exercises.
Balena is written and supported by balena.io (https://balena.io). There is much more
information about the software in the Reference section of the online Docs at balena.io. We
won't dig into how balena works since our goal is to deploy and automatically update
software on a small fleet of devices for fast development.
Balena provides prebuilt balenaOS images for popular dev boards such as the Raspberry Pi
4 and BeagleBone Black. Downloading these images requires a balenaCloud account.

Creating an account
The first thing you need to do even if you only intend to operate in local mode is to sign up
for a balenaCloud account. You do this by visiting https://dashboard.balena-
cloud.com/signup and entering your email address and a password, as shown:

https://balena.io/
http://balena.io/
https://dashboard.balena-cloud.com/signup


Figure 10.9 – balenaCloud signup

Click the Sign up button to submit the form and once it is done processing, you will be
prompted to enter your profile details. You may choose to skip this form, at which point
you will enter the balenaCloud dashboard under your new account.



If you sign out or your session expires, you can log back into the dashboard by navigating
to https://dashboard.balena-cloud.com/login and entering the email address and password
you signed up with.

Creating an application
Before we can add a Raspberry Pi 4 to a balenaCloud account, we first need to create 
an application.

https://dashboard.balena-cloud.com/login


Figure 10.10 – Create application

Here are the steps for creating an application for the Raspberry Pi 4 on balenaCloud:
1. Log in to the balenaCloud dashboard with your email address and password.
2. Click on the Create application button in the upper-left corner, under Applications,

to open the Create application dialog.



3. Enter a name for your new application and select Raspberry Pi 4 for Default 
device type.

4. Click on the Create new application button in the Create application dialog to
submit the form.

The Application type defaults to Starter, which is fine for these exercises. Your new
application should appear in the balenaCloud dashboard under Applications.

Adding a device
Now that we have an application on balenaCloud, let's add a Raspberry Pi 4 to it:

1. Log in to the balenaCloud dashboard with your email address and password.
2. Click on the new application we created.
3. Click on the Add device button from the Devices page:



Figure 10.11 – Add device

4. Clicking on the button will bring up the Add new device dialog.
5. Ensure that Raspberry Pi 4 is the selected device type. That option should already be

selected since you created the application with Raspberry Pi 4 as the Default device
type.

6. Ensure that balenaOS is the selected OS.
7. Ensure that the selected version of balenaOS is the latest. That option should already

be selected since Add new device defaults to the latest available version of balenaOS,
which it designates as recommended.

8. Select Development as the edition of balenaOS. A development image is required to
enable local mode for better testing and troubleshooting.



9. Select Wifi + Ethernet for Network Connection. You could choose Ethernet only
but auto-connecting to Wi-Fi is a very convenient feature.

10. Enter your Wi-Fi router's SSID and passphrase in their respective fields. Replace RT-
AC66U_B1_38_2G in the following screenshot with your Wi-Fi router's SSID:

Figure 10.12 – Add new device



11. Click the Download balenaOS button.
12. Save the zipped image file to your host machine.

We now have a microSD card image we can use to provision any number of Raspberry Pi
4s for your application's test fleet.
The steps for provisioning a Raspberry Pi 4 from your host machine should be familiar to
you by now. Locate the balenaOS img.zip file that you downloaded from balenaCloud and
use Etcher to write it to a microSD card. Insert the microSD card into your Raspberry Pi 4
and power it up by way of the USB-C port.
It will take a minute or two for the Raspberry Pi 4 to appear on the Devices page of your
balenaCloud dashboard:



Figure 10.13 – Devices

Now that we have connected a Raspberry Pi 4 to a balena application, we need to enable
local mode so that we can deploy OTA updates to it from a nearby host machine rather than
the cloud:

1. Click on your target Raspberry Pi 4 from the Devices page of your balenaCloud
dashboard. My device is named late-water. Yours will have a different name.

2. Click on the down arrow next to the light bulb on the device dashboard for your
Raspberry Pi 4.

3. Select Enable local mode from the drop-down menu:



Figure 10.14 – Enable local mode

Once local mode is enabled, the Logs and Terminal panels are no longer available in the
device dashboard. The status of the device changes from Online (for N minutes) to Online
(local mode).



With local mode now enabled on our target device, we are almost ready to deploy some
code to it. Before we can do that, we need to install the balena CLI.

Installing the CLI
Here are the instructions for installing the balena CLI on a Linux host machine:

1. Open a web browser and navigate to the latest balena CLI release page at
https://github.com/balena-io/balena-cli/releases/latest.

2. Click on the latest ZIP file for Linux to download it. Look for a filename of the form
balena-cli-vX.Y.Z-linux-x64-standalone.zip, substituting major, minor, and
patch version numbers for X, Y, and Z.

3. Extract the zip file contents to your home directory:
$ cd ~

$ unzip Downloads/balena-cli-v12.25.4-linux-x64-standalone.zip

The extracted contents are enclosed in a balena-cli directory.
4. Add the balena-cli directory to your PATH environment variable:

$ export PATH=$PATH:~/balena-cli

Add a line like this to the .bashrc file in your home directory if you want
these changes to your PATH variable to persist.

5. Verify that the installation was successful:
$ balena version

12.25.4

The latest version of the balena CLI at the time of writing was 12.25.4.

Now that we have a working balena CLI, let's scan the local network for the Raspberry Pi 4
we provisioned:

$ sudo env "PATH=$PATH" balena scan

Reporting scan results

-

  host:          01e9ff1.local

  address:       192.168.50.129

  dockerInfo:

    Containers:        1

    ContainersRunning: 1

    ContainersPaused:  0

    ContainersStopped: 0

    Images:            2

    Driver:            overlay2

    SystemTime:        2020-10-26T23:44:44.37360414Z

    KernelVersion:     5.4.58

https://github.com/balena-io/balena-cli/releases/latest


    OperatingSystem:   balenaOS 2.58.6+rev1

    Architecture:      aarch64

  dockerVersion:

    Version:    19.03.13-dev

    ApiVersion: 1.40

Notice the hostname of 01e9ff1.local and IP address of 192.168.50.129 in the scan
output. The hostname and IP address of your Raspberry Pi 4 will vary. Record these two
pieces of information because we will need them for the remaining exercises.

Pushing a project
Let's push a Python project to the Raspberry Pi over the local network:

1. Clone a project for a simple "Hello World!" Python web server:
$ git clone https://github.com/balena-io-examples/balena-python-
hello-world.git

2. Navigate into the project directory:
$ cd balena-python-hello-world

3. Push the code to your Raspberry Pi 4:
$ balena push 01e9ff1.local

Substitute your device's hostname for the 01e9ff1.local argument.
4. Wait for the Docker image to finish building and starting and let the application run in

the foreground so that it logs to stdout.
5. Issue a request to the web server at https://192.168.50.129 from a web browser.

Substitute your device's IP address for 192.168.50.129.

The web server running on the Raspberry Pi 4 should respond with "Hello World!" and a
line like the following should appear in the live output from balena push:

[Logs]    [10/26/2020, 5:26:35 PM] [main] 192.168.50.146 - -
[27/Oct/2020 00:26:35] "GET / HTTP/1.1" 200 -

The IP address in the log entry should be that of the machine from which you issued the
web request. A new log entry should appear every time you refresh the web page. To stop
tailing the logs and return to the shell, enter Ctrl + C. The container will continue running
on the target device and the "Hello World!" web server will continue to service requests.
We can restart tailing the logs at any time by issuing the following command:

$ balena logs 01e9ff1.local

Substitute your device's hostname for the 01e9ff1.local argument.
The source code for this simple web server can be found in a file named main.py within the
project directory:

tree

.

├

https://192.168.50.129/


├── Dockerfile.template

├── img

│   ├── enable-public-URLs.png

│   └── log-output.png

├── README.md

├── requirements.txt

└── src

    └── main.py

Now let's make a slight modification to the project source code and redeploy:
1. Open src/main.py in your favorite editor.
2. Replace 'Hello World!' with 'Hello from Pi 4!' and save your changes. The

following git diff output captures the changes:
$ git diff

diff --git a/src/main.py b/src/main.py

index 940b2df..26321a1 100644

--- a/src/main.py

+++ b/src/main.py

@@ -3,7 +3,7 @@ app = Flask(__name__)

@app.route('/')

def hello_world():

-    return 'Hello World!'

+    return 'Hello from Pi 4!'

if __name__ == '__main__':

     app.run(host='0.0.0.0', port=80)

3. Push the new code to your Raspberry Pi 4:
$ balena push 01e9ff1.local

Substitute your device's hostname for the 01e9ff1.local argument.
4. Wait for the Docker image to update. The process should be much quicker this time

around because of an intelligent caching feature called Livepush that is unique to local
mode.

5. Issue a request to the web server at https://192.168.50.129 from a web browser.
Substitute your device's IP address for 192.168.50.129.

The web server running on the Raspberry Pi 4 should respond with "Hello from Pi 4!"
We can SSH into a local target device by IP address:

$ balena ssh 192.168.50.129

Last login: Tue Oct 27 00:32:04 2020 from 192.168.50.146

root@01e9ff1:~#

Substitute your device's IP address for 192.168.50.129. This is not especially useful
because the application is running inside a Docker container.

https://192.168.50.129/


To SSH into the container where the Python web server is running and observe what it's
doing, we need to include the service name in the balena ssh command:

$ balena ssh 192.168.50.129 main

root@01e9ff1:/usr/src/app# ls

Dockerfile  Dockerfile.template  README.md  requirements.txt  src

root@01e9ff1:/usr/src/app# ps -ef

UID        PID  PPID  C STIME TTY          TIME CMD

root         1     0  0 00:26 pts/0    00:00:01 /usr/local/bin/python -u
src/main.py

root        30     1  0 00:26 ?        00:00:00 /lib/systemd/systemd-
udevd --daemon

root        80     0  2 00:48 pts/1    00:00:00 /bin/bash

root        88    80  0 00:48 pts/1    00:00:00 ps -ef

#

The service name for this starter application is main as seen in the live logs output.
Congratulations! You have successfully created a balenaOS image and host development
environment that you and your team can use to iterate on project code and quickly redeploy
to a target device. This is no small feat. Pushing code changes in the form of a Docker
container is a common development workflow that full-stack engineers are very
accustomed to. With balena, they can now use the techniques they are familiar with to
develop embedded Linux applications on actual hardware.

Summary
Being able to update the software on devices in the field is at the very least a useful
attribute, and if the device is connected to the internet, it becomes an absolute must. And
yet, all too often it is a feature that is left until the last part of a project, on the assumption
that it is not a hard problem to solve. In this chapter, I hope that I have illustrated the
problems that are associated with designing an effective and robust update mechanism, and
also that there are several open source options readily available. You do not have to
reinvent the wheel anymore.
The approach used most often, and also the one with the most real-world testing, is the
symmetric image (A/B) update, or its cousin, the asymmetric (recovery) image update.
Here, you have the choice of SWUpdate, RAUC, Mender, and fwup. A more recent
innovation is the atomic file update, in the form of OSTree. This has good characteristics in
reducing the amount of data that needs to be downloaded and the amount of redundant
storage that needs to be fitted on the target. Lastly, with the proliferation of Docker came
the desire for containerized software updates. This is the approach that balena takes.
It is quite common to deploy updates on a small scale by visiting each site and applying the
update from a USB memory stick or SD card. But, if you want to deploy to remote
locations, or deploy at scale, an over-the-air (OTA) update option will be needed.



The next chapter describes how you control the hardware components of your system
through the use of device drivers, both in the conventional sense of drivers that are part of
the kernel, and also the extent to which you can control hardware from the user space.



Chapter 11: Interfacing with Device Drivers
Kernel device drivers are the mechanism through which the underlying hardware is exposed
to the rest of the system. As a developer of embedded systems, you need to know how these
device drivers fit into the overall architecture and how to access them from 
user space programs. Your system will probably have some novel pieces of hardware, and
you will have to work out a way of accessing them. In many cases, you will find that there
are device drivers provided for you, and you can achieve everything you want without
writing any kernel code. For example, you can manipulate GPIO pins and LEDs using 
files in sysfs, and there are libraries you can use to access serial buses, including SPI
(Serial Peripheral Interface) and I2C (Inter-Integrated Circuit).
There are many places to find out how to write a device driver, but few tell you why you
would want to and the choices you have in doing so. This is what I want to cover here.
However, remember that this is not a book dedicated to writing kernel device drivers, and
that the information given here is to help you navigate the territory but not necessarily set
up home there. There are many good books and articles that will help you to write device
drivers, some of which are listed at the end of this chapter in the Further reading section.
In this chapter, we will cover the following topics:

The role of device drivers
Character devices
Block devices
Network devices
Finding out about drivers at runtime
Finding the right device driver
Device drivers in user space
Writing a kernel device driver
Discovering the hardware configuration

Let's get started!

Technical requirements
To follow along with the examples in this chapter, make sure you have the following:

A Linux-based host system
A microSD card reader and card
A BeagleBone Black
A 5V 1A DC power supply



An Ethernet cable and port for network connectivity

All the code for this chapter can be found in the Chapter11 folder of this book's GitHub
repository: https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-
Third-Edition.

The role of device drivers
As I mentioned in Chapter 4, Configuring and Building the Kernel, one of the functions of
the kernel is to encapsulate the many hardware interfaces of a computer system and present
them in a consistent manner to user space programs. The kernel has frameworks designed
to make it easy to write a device driver, which is the piece of code that mediates between
the kernel above and the hardware below. A device driver may be written to control
physical devices such as a UART or an MMC controller, or it may represent a virtual device
such as the null device (/dev/null) or a ramdisk. One driver may control multiple devices
of the same kind.
Kernel device driver code runs at a high privilege level, as does the rest of the kernel. It has
full access to the processor address space and hardware registers. It can handle interrupts
and DMA transfers. It can also make use of the sophisticated kernel infrastructure for
synchronization and memory management. However, you should be aware that there is a
downside to this; if something goes wrong in a buggy driver, it can go really wrong and
bring the system down. Consequently, there is a principle that device drivers should be as
simple as possible by just providing information to applications where the real decisions are
made. You often hear this being expressed as no policy in the kernel. It is the responsibility
of user space to set the policy that governs the overall behavior of the system. For example,
loading kernel modules in response to external events, such as plugging in a new USB
device, is the responsibility of the user space program, udev, not the kernel. The kernel just
supplies a means of loading a kernel module.
In Linux, there are three main types of device driver:

Character: This is for an unbuffered I/O with a rich range of functions and a thin
layer between the application code and the driver. It is the first choice when
implementing custom device drivers.
Block: This has an interface tailored for block I/O to and from mass storage devices.
There is a thick layer of buffering designed to make disk reads and writes as fast as
possible, which makes it unsuitable for anything else.
Network: This is similar to a block device but is used for transmitting and receiving
network packets rather than disk blocks.

There is also a fourth type that presents itself as a group of files in one of the pseudo
filesystems. For example, you might access the GPIO driver through a group of files in 
/sys/class/gpio, as I will describe later on in this chapter. Let's begin by looking in 
at these three basic device types in more detail.

https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


Character devices
Character devices are identified in the user space by a special file called a device node.
This filename is mapped to a device driver using the major and minor numbers associated
with it. Broadly speaking, the major number maps the device node to a particular device
driver, while the minor number tells the driver which interface is being accessed. For
example, the device node of the first serial port on the Arm Versatile PB is named
/dev/ttyAMA0, and it has major number of 204 and minor number of 64. The device node
for the second serial port has the same major number, since it is handled by the same device
driver, but the minor number is 65. We can see the numbers for all four serial ports from the
directory listing here:

# ls -l /dev/ttyAMA*

crw-rw---- 1 root root 204, 64 Jan 1 1970 /dev/ttyAMA0

crw-rw---- 1 root root 204, 65 Jan 1 1970 /dev/ttyAMA1

crw-rw---- 1 root root 204, 66 Jan 1 1970 /dev/ttyAMA2

crw-rw---- 1 root root 204, 67 Jan 1 1970 /dev/ttyAMA3

The list of standard major and minor numbers can be found in the kernel documentation in
Documentation/devices.txt. The list does not get updated very often and does not include
the ttyAMA device described in the preceding paragraph. Nevertheless, if you look at the
kernel source code in drivers/tty/serial/amba-pl011.c, you will see where the major
and minor numbers are declared:

#define SERIAL_AMBA_MAJOR 204

#define SERIAL_AMBA_MINOR 64

Where there is more than one instance of a device, as with the ttyAMA driver, the
convention for forming the name of the device node is to take a base name, ttyAMA, and
append the instance number from 0 to 3 in this example.
As I mentioned in Chapter 5, Building a Root Filesystem, the device nodes can be created
in several ways:

devtmpfs: The device node is created when the device driver registers a new device
interface using a base name supplied by the driver (ttyAMA) and an instance number.
udev or mdev (without devtmpfs): Essentially the same as with devtmpfs, except that a
user space daemon program has to extract the device name from sysfs and create the
node. I will talk about sysfs later.
mknod: If you are using static device nodes, they are created manually using mknod.

You may have the impression from the numbers I have used here that both major and minor
numbers are 8-bit numbers in the range 0 to 255. In fact, from Linux 2.6 onward, the major
number is 12 bits long, which gives valid numbers from 1 to 4,095, and the minor number
is 20 bits, from 0 to 1,048,575.
When you open a character device node, the kernel checks whether the major and minor
numbers fall into a range registered by a character device driver. If so, it passes the call to



the driver; otherwise, the open call fails. The device driver can extract the minor number to
find out which hardware interface to use.
To write a program that accesses a device driver, you have to have some knowledge of how
it works. In other words, a device driver is not the same as a file: the things you do with it
change the state of the device. A simple example is the pseudorandom number generator,
urandom, which returns bytes of random data every time you read it. Here is a program that
does just this (you will find the code in MELP/Chapter11/read-urandom):

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

int main(void)

{

   int f;

   unsigned int rnd;

   int n;

   f = open("/dev/urandom", O_RDONLY);

   if (f < 0) {

      perror("Failed to open urandom");

      return 1;

   }

   n = read(f, &rnd, sizeof(rnd));

   if (n != sizeof(rnd)) {

      perror("Problem reading urandom");

      return 1;

   }

   printf("Random number = 0x%x\n", rnd);

   close(f);

   return 0;

}

The nice thing about the Unix driver model is that once we know that there is a device
named urandom, every time we read from it, it returns a fresh set of pseudorandom data, so
we don't need to know anything else about it. We can just use standard functions such as
open(2), read(2), and close(2).

TIP
You could use the stream I/O functions known as fopen(3), fread(3), and fclose(3)
instead, but the buffering implicit in these functions often causes unexpected behavior. For
example, fwrite(3) usually only writes to the user space buffer, not to the device. You
would need to call fflush(3) to force the buffer to be written out. Therefore, it is best to
not use stream I/O functions when calling device drivers.



Most device drivers employ a character interface. Mass storage devices are a notable
exception. Reading and writing to disk requires a block interface for maximum speed.

Block devices
Block devices are also associated with a device node, which also has major and 
minor numbers.

TIP
Although character and block devices are identified using major and minor numbers, they
are in different namespaces. A character driver with a major number of 4 is in no way
related to a block driver with a major number of 4.
With block devices, the major number is used to identify the device driver and the minor
number is used to identify the partition. Let's look at the MMC driver on the BeagleBone
Black as an example:

# ls -l /dev/mmcblk*

brw-rw---- 1 root disk 179, 0 Jan 1 2000 /dev/mmcblk0

brw-rw---- 1 root disk 179, 1 Jan 1 2000 /dev/mmcblk0p1

brw-rw---- 1 root disk 179, 2 Jan 1 2000 /dev/mmcblk0p2

brw-rw---- 1 root disk 179, 8 Jan 1 2000 /dev/mmcblk1

brw-rw---- 1 root disk 179, 16 Jan 1 2000 /dev/mmcblk1boot0

brw-rw---- 1 root disk 179, 24 Jan 1 2000 /dev/mmcblk1boot1

brw-rw---- 1 root disk 179, 9 Jan 1 2000 /dev/mmcblk1p1

brw-rw---- 1 root disk 179, 10 Jan 1 2000 /dev/mmcblk1p2

Here, mmcblk0 is the microSD card slot, which has a card that has two partitions, and
mmcblk1 is the eMMC chip, which also has two partitions. The major number for the MMC
block driver is 179 (you can look it up in devices.txt). The minor numbers are used in
ranges to identify different physical MMC devices, and the partitions of the storage medium
that are on that device. In the case of the MMC driver, the ranges are eight minor numbers
per device: the minor numbers from 0 to 7 are for the first device, the numbers from 8 to 15
are for the second, and so on. Within each range, the first minor number represents the
entire device as raw sectors, and the others represent up to seven partitions. On eMMC
chips, there are two 128 KiB areas of memory reserved for use by a bootloader. These are
represented as two devices known as mmcblk1boot0 and mmcblk1boot1, and they have
minor numbers of 16 and 24, respectively.
As another example, you are probably aware of the SCSI disk driver, known as sd, which is
used to control a range of disks that use the SCSI command set, which includes SCSI,
SATA, USB mass storage, and Universal Flash Storage (UFS). It has the major number 8
and ranges of 16 minor numbers per interface (or disk). The minor numbers from 0 to 15
are for the first interface with device nodes named sda up to sda15, the numbers from 16 to
31 are for the second disk with device nodes sdb up to sdb15, and so on. This continues up
to the 16th disk from 240 to 255 with the node name sdp. There are other major numbers
reserved for them because SCSI disks are so popular, but we needn't worry about that here.



Both the MMC and SCSI block drivers expect to find a partition table at the start of the
disk. The partition table is created using utilities such as fdisk, sfidsk, and parted.
A user space program can open and interact with a block device directly via the device
node. This is not a common thing to do, though, and is usually only done to perform
administrative operations such as creating partitions, formatting a partition with a
filesystem, and mounting. Once the filesystem has been mounted, you interact with the
block device indirectly through the files in that filesystem.
Most block devices will have a kernel driver that works, so we rarely need to write our
own. The same goes for network devices. Just like a filesystem abstracts the details of a
block device, the network stack eliminates the need to interact directly with a network
device.

Network devices
Network devices are not accessed through device nodes, and they do not have major and
minor numbers. Instead, a network device is allocated a name by the kernel, based on a
string and an instance number. Here is an example of the way a network driver registers an
interface:

my_netdev = alloc_netdev(0, "net%d", NET_NAME_UNKNOWN, netdev_setup);

ret = register_netdev(my_netdev);

This creates a network device named net0 the first time it is called, net1 the second time,
and so on. More common names include lo, eth0, and wlan0. Note that this is the name it
starts off with; device managers, such as udev, may change it to something different later
on.
Usually, the network interface name is only used when configuring the network using
utilities, such as ip and ifconfig, to establish a network address and route. Thereafter, you
interact with the network driver indirectly by opening sockets and letting the network layer
decide how to route them to the right interface.
However, it is possible to access network devices directly from the user space by creating a
socket and using the ioctl commands listed in include/linux/sockios.h. For example,
this program uses SIOCGIFHWADDR to query the driver for the hardware (MAC) address (the
code is in MELP/Chapter11/show-mac-addresses):

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <sys/ioctl.h>

#include <linux/sockios.h>

#include <net/if.h>

int main(int argc, char *argv[])

{

   int s;



   int ret;

   struct ifreq ifr;

   int i;

   if (argc != 2) {

      printf("Usage %s [network interface]\n", argv[0]);

      return 1;

   }

   s = socket(PF_INET, SOCK_DGRAM, 0);

   if (s < 0) {

      perror("socket");

      return 1;

   }

   strcpy(ifr.ifr_name, argv[1]);

   ret = ioctl(s, SIOCGIFHWADDR, &ifr);

   if (ret < 0) {

      perror("ioctl");

      return 1;

   }

   for (i = 0; i < 6; i++)

      printf("%02x:", (unsigned char)ifr.ifr_hwaddr.sa_data[i]);

   printf("\n");

   close(s);

   return 0;

}

This program takes a network interface name as an argument. After opening a socket, we
copy the interface name to a struct and pass that struct in to the ioctl call on the socket,
before printing out the resulting MAC address.
Now that we know what the three categories of device drivers are, how do we list the
different drivers that are in use on our system?

Finding out about drivers at runtime
Once you have a running Linux system, it is useful to know which device drivers have been
loaded and what state they are in. You can find out a lot by reading the files in 
/proc and /sys.
First of all, you can list the character and block device drivers that are currently loaded and
active by reading /proc/devices:

# cat /proc/devices

Character devices:

  1 mem

  2 pty

  3 ttyp



  4 /dev/vc/0

  4 tty

  4 ttyS

  5 /dev/tty

  5 /dev/console

  5 /dev/ptmx

  7 vcs

10 misc

13 input

29 fb

81 video4linux

89 i2c

90 mtd

116 alsa

128 ptm

136 pts

153 spi

180 usb

189 usb_device

204 ttySC

204 ttyAMA

207 ttymxc

226 drm

239 ttyLP

240 ttyTHS

241 ttySiRF

242 ttyPS

243 ttyWMT

244 ttyAS

245 ttyO

246 ttyMSM

247 ttyAML

248 bsg

249 iio

250 watchdog

251 ptp

252 pps

253 media

254 rtc

Block devices:

259 blkext

  7 loop

  8 sd

11 sr



31 mtdblock

65 sd

66 sd

67 sd

68 sd

69 sd

70 sd

71 sd

128 sd

129 sd

130 sd

131 sd

132 sd

133 sd

134 sd

135 sd

179 mmc

For each driver, you can see the major number and the base name. However, this does not
tell you how many devices each driver is attached to. It only shows ttyAMA but it gives you
no clue as to whether it is attached to four real serial ports. I will come back to that later
when we look at sysfs.
Of course, network devices do not appear in this list, because they do not have device
nodes. Instead, you can use tools such as ifconfig or ip to get a list of network devices:

# ip link show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state

UNKNOWN mode DEFAULT

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: eth0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc

pfifo_fast state DOWN mode DEFAULT qlen 1000

link/ether 54:4a:16:bb:b7:03 brd ff:ff:ff:ff:ff:ff

3: usb0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

pfifo_fast state UP mode DEFAULT qlen 1000

link/ether aa:fb:7f:5e:a8:d5 brd ff:ff:ff:ff:ff:ff

You can also find out about devices attached to USB or PCI buses using the well-known
lsusb and lspci commands. There is information about them in the respective manual
pages and plenty of online guides, so I will not describe them any further here.
The really interesting information is in sysfs, which is the next topic we'll cover.

Getting information from sysfs
You can define sysfs in a pedantic way as a representation of kernel objects, attributes, and
relationships. A kernel object is a directory, an attribute is a file, and a relationship is a



symbolic link from one object to another. From a more practical point of view, since the
Linux device driver model represents all devices and drivers as kernel objects, you can see
the kernel's view of the system laid out before you by looking in /sys, as shown here:

# ls /sys

block class devices fs module

bus dev firmware kernel power

In the context of discovering information about devices and drivers, I will look at three of
these directories: devices, class, and block.
The devices – /sys/devices
This is the kernel's view of the devices that have been discovered since boot and how they
are connected to each other. It is organized at the top level by the system bus, so what you
see varies from one system to another. This is the QEMU emulation of the Arm Versatile:

# ls /sys/devices

platform software system tracepoint virtual

There are three directories that are present on all systems:
system/: This contains devices at the heart of the system, including CPUs and clocks.
virtual/: This contains devices that are memory-based. You will find the memory
devices that appear as /dev/null, /dev/random, and /dev/zero in virtual/mem. You
will find the loopback device, lo, in virtual/net.
platform/: This is a catch-all for devices that are not connected via a conventional
hardware bus. This may be almost everything on an embedded device.

The other devices appear in directories that correspond to actual system buses. For
example, the PCI root bus, if there is one, appears as pci0000:00.
Navigating this hierarchy is quite hard, because it requires some knowledge of the topology
of your system, and the pathnames become quite long and hard to remember. To make life
easier, /sys/class and /sys/block offer two different views of the devices.
The drivers – /sys/class
This is a view of the device drivers presented by their type. In other words, it is a software
view rather than a hardware view. Each of the subdirectories represents a class of driver and
is implemented by a component of the driver framework. For example, UART devices are
managed by the tty layer, and you will find them in /sys/class/tty. Likewise, you will
find network devices in /sys/class/net, input devices such as the keyboard, the
touchscreen, and the mouse in /sys/class/input, and so on.
There is a symbolic link in each subdirectory for each instance of that type of device
pointing to its representation in /sys/device.
To take a concrete example, let's look at the serial ports on the Versatile PB. First of all, we
can see that there are four of them:

# ls -d /sys/class/tty/ttyAMA*

/sys/class/tty/ttyAMA0 /sys/class/tty/ttyAMA2

/sys/class/tty/ttyAMA1 /sys/class/tty/ttyAMA3



Each directory is a representation of the kernel object that is associated with an instance of
a device interface. Looking within one of these directories, we can see the attributes of the
object, represented as files, and the relationships with other objects, represented by links:

# ls /sys/class/tty/ttyAMA0

close_delay flags line uartclk

closing_wait io_type port uevent

custom_divisor iomem_base power xmit_fifo_size

dev iomem_reg_shift subsystem

device irq type

The link called device points to the hardware object for the device. The link called
subsystem points back to the parent subsystem, /sys/class/tty. The remaining directory
entries are attributes. Some are specific to a serial port, such as xmit_fifo_size, 
while others apply to many types of device, such as the interrupt number, irq, and the
device number, dev. Some attribute files are writable and allow you to tune parameters in
the driver at runtime.
The dev attribute is particularly interesting. If you look at its value, you will find 
the following:

# cat /sys/class/tty/ttyAMA0/dev

204:64

These are the major and minor numbers of this device. This attribute is created when the
driver registers this interface. It is from this file that udev and mdev find the major and
minor numbers of the device driver.
The block drivers – /sys/block
There is one more view of the device model that is important to this discussion: the block
driver view that you will find in /sys/block. There is a subdirectory for each block device.
This example has been taken from a BeagleBone Black:

# ls /sys/block

loop0 loop4 mmcblk0 ram0 ram12 ram2 ram6

loop1 loop5 mmcblk1 ram1 ram13 ram3 ram7

loop2 loop6 mmcblk1boot0 ram10 ram14 ram4 ram8

loop3 loop7 mmcblk1boot1 ram11 ram15 ram5 ram9

If you look into mmcblk1, which is the eMMC chip on this board, you will see the attributes
of the interface and the partitions within it:

# ls /sys/block/mmcblk1

alignment_offset ext_range mmcblk1p1 ro

bdi force_ro mmcblk1p2 size

capability holders power slaves

dev inflight queue stat

device mmcblk1boot0 range subsystem

discard_alignment mmcblk1boot1 removable uevent

The conclusion, then, is that you can learn a lot about the devices (the hardware) and the
drivers (the software) that are present on a system by reading sysfs.



Finding the right device driver
A typical embedded board is based on a reference design from the manufacturer with
changes to make it suitable for a particular application. The BSP that comes with the
reference board should support all of the peripherals on that board. But, then you customize
the design, perhaps by adding a temperature sensor attached via I2C, some lights and
buttons connected via GPIO pins, a display panel via a MIPI interface, or many other
things. Your job is to create a custom kernel to control all of these, but where do you start
looking for device drivers that support all these peripherals?
The most obvious place to look is the driver support page on the manufacturer's website, or
you could ask them directly. In my experience, this seldom gets the result you want;
hardware manufacturers are not particularly Linux-savvy, and they often give you
misleading information. They may have proprietary drivers as binary blobs, or they may
have source code but for a different version of the kernel than the one you have. So, by all
means try this route. Personally, I will always try to find an open source driver for the task
in hand.
There may be support in your kernel already: there are many thousands of drivers in
mainline Linux and there are many vendor-specific drivers in the vendor kernels. Begin by
running make menuconfig (or xconfig) and search for the product name or number. If you
do not find an exact match, try more generic searches, allowing for the fact that most
drivers handle a range of products from the same family. Next, try searching through the
code in the drivers directory (grep is you friend here).
If you still don't have a driver, you can try searching online and asking in the relevant
forums to see if there is a driver for a later version of Linux. If you find one, you should
seriously consider updating the BSP to use the later kernel. Sometimes, this is not practical,
and so it may have to think of backporting the driver to your kernel. If the kernel versions
are similar, it may be easy, but if they are more than 12 to 18 months apart, then chances are
that the code will have changed to the extent that you will have to rewrite a chunk of the
driver to integrate it with your kernel. If all of these options fail, you will have to find a
solution yourself by writing the missing kernel driver. However, this is not always
necessary. We will look at this in the next section.

Device drivers in user space
Before you start writing a device driver, pause for a moment to consider whether it is really
necessary. There are generic device drivers for many common types of devices that allow
you to interact with hardware directly from user space, without having to write a line of
kernel code. User space code is certainly easier to write and debug. It is also not covered by
the GPL, although I don't feel that is a good reason in itself to do it this way.
These drivers fall into two broad categories: those that you control through files in sysfs,
including GPIO and LEDs, and serial buses that expose a generic interface through a device
node, such as I2C.



GPIO
General-Purpose Input/Output (GPIO) is the simplest form of digital interface since it
gives you direct access to individual hardware pins, each of which can be in one of two
states: either high or low. In most cases, you can configure the GPIO pin to be either an
input or an output. You can even use a group of GPIO pins to create higher level interfaces
such as I2C or SPI by manipulating each bit in software, a technique that is called bit
banging. The main limitation is the speed and accuracy of the software loops and the
number of CPU cycles you want to dedicate to them. Generally speaking, it is hard to
achieve timer accuracy better than a millisecond unless you configure a real-time kernel, as
we shall see in Chapter 21, Real-Time Programming. More common use cases for GPIO
are for reading push buttons and digital sensors and controlling LEDs, motors, and relays.
Most SoCs have a lot of GPIO bits, which are grouped together in GPIO registers, usually
32 bits per register. On-chip GPIO bits are routed through to GPIO pins on the chip package
via a multiplexer, known as a pin mux. There may be additional GPIO pins available off-
chip in the power management chip, and in dedicated GPIO extenders, connected through
I2C or SPI buses. All this diversity is handled by a kernel subsystem known as gpiolib,
which is not actually a library but the infrastructure GPIO drivers used to expose I/O in a
consistent way. There are details about the implementation of gpiolib in the kernel source
in Documentation/gpio, and the code for the drivers themselves is in drivers/gpio.
Applications can interact with gpiolib through files in the /sys/class/gpio directory.
Here is an example of what you will see in there on a typical embedded board 
(a BeagleBone Black):

# ls /sys/class/gpio

export gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport

The directories named gpiochip0 through to gpiochip96 represent four GPIO registers,
each with 32 GPIO bits. If you look in one of the gpiochip directories, you will see the
following:

# ls /sys/class/gpio/gpiochip96

base label ngpio power subsystem uevent

The file named base contains the number of the first GPIO pin in the register, while ngpio
contains the number of bits in the register. In this case, gpiochip96/base is 96 and
gpiochip96/ngpio is 32, which tells you that it contains GPIO bits 96 to 127. It is possible
for there to be a gap between the last GPIO in one register and the first GPIO in the next.
To control a GPIO bit from user space, you first have to export it from kernel space, which
you can do by writing the GPIO number to /sys/class/gpio/export. This example shows
the process for GPIO 53, which is wired to user LED 0 on the BeagleBone Black:

# echo 53 > /sys/class/gpio/export

# ls /sys/class/gpio

export gpio53 gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport

Now, there is a new directory, gpio53, which contains the files you need to control 
the pin.



IMPORTANT NOTE
If the GPIO bit is already claimed by the kernel, you will not be able to export it in this way.
The gpio53 directory contains these files:

# ls /sys/class/gpio/gpio53

active_low direction power uevent

device edge subsystem value

The pin begins as an input. To change it to an output, write out to the direction file. The
file value contains the current state of the pin, which is 0 for low and 1 for high. If it is an
output, you can change the state by writing 0 or 1 to value. Sometimes, the meaning of low
and high is reversed in hardware (hardware engineers enjoy doing that sort of thing), so
writing 1 to active_low inverts the meaning of value so that a low voltage is reported as 1
and a high voltage is reported as 0.
You can remove a GPIO from user space control by writing the GPIO number to
/sys/class/gpio/unexport.
Handling interrupts from GPIO
In many cases, a GPIO input can be configured to generate an interrupt when it changes
state, which allows you to wait for the interrupt rather than polling in an inefficient software
loop. If the GPIO bit can generate interrupts, a file called edge exists. Initially, it has the
value called none, meaning that it does not generate interrupts. To enable interrupts, you
can set it to one of these values:

rising: Interrupt on rising edge
falling: Interrupt on falling edge
both: Interrupt on both rising and falling edges
none: No interrupts (default)

If you want to wait for a falling edge on GPIO 48, you must first enable the interrupts:
# echo 48 > /sys/class/gpio/export

# echo falling > /sys/class/gpio/gpio48/edge

To wait for an interrupt from the GPIO, follow these steps:
1. First, call epoll_create to create the epoll notification facility:

int ep;

ep = epoll_create(1);

2. Next, open the GPIO and read out its initial value:
int f;

int n;

char value[4];

f = open("/sys/class/gpio/gpio48/value", O_RDONLY | O_NONBLOCK);

[…]

n = read(f, &value, sizeof(value));

if (n > 0) {



     printf("Initial value value=%c\n",

           value[0]);

     lseek(f, 0, SEEK_SET);

}

3. Call epoll_ctl to register the GPIO's file descriptor with POLLPRI as the event:
struct epoll_event ev, events;

ev.events = EPOLLPRI;

ev.data.fd = f;

int ret;

ret = epoll_ctl(ep, EPOLL_CTL_ADD, f, &ev);

4. Lastly, wait for an interrupt using the epoll_wait function:
while (1) {

     printf("Waiting\n");

     ret = epoll_wait(ep, &events, 1, -1);

     if (ret > 0) {

           n = read(f, &value, sizeof(value));

           printf("Button pressed: value=%c\n", value[0]);

           lseek(f, 0, SEEK_SET);

     }

}

The complete source code for this program, as well as a Makefile and GPIO configuration
script, can be found inside the MELP/Chapter11/gpio-int/ directory that's included with
this book's code archive.
While we could have used select and poll to handle interrupts, unlike those other two
system calls, the performance of epoll does not degrade rapidly as the number of file
descriptors being monitored increases.
Like GPIOs, LEDs are accessible from sysfs. The interface, however, is noticeably
different.

LEDs
LEDs are often controlled though a GPIO pin, but there is another kernel subsystem that
offers more specialized control that's specific for this purpose. The leds kernel subsystem
adds the ability to set brightness, should the LED have that ability, and it can handle LEDs
connected in other ways than a simple GPIO pin. It can be configured to trigger the LED on
an event, such as block device access or just a heartbeat, to show that the device is working.
You will have to configure your kernel with the CONFIG_LEDS_CLASS option and with the
LED trigger actions that are appropriate to you. There is more information on
Documentation/leds/, and the drivers are in drivers/leds/.
As with GPIOs, LEDs are controlled through an interface in sysfs in the /sys/class/leds
directory. In the case of the BeagleBone Black, the names of the LEDs are encoded in the



device tree in the form of devicename:colour:function, as shown here:
# ls /sys/class/leds

beaglebone:green:heartbeat beaglebone:green:usr2

beaglebone:green:mmc0 beaglebone:green:usr3

Now, we can look at the attributes of one of the LEDs:
# cd /sys/class/leds/beaglebone\:green\:usr2

# ls

brightness max_brightness subsystem uevent

device power trigger

Note that leading backslashes are required by the shell to escape the colons in the path.
The brightness file controls the brightness of the LED and can be a number between 0
(off) and max_brightness (fully on). If the LED doesn't support intermediate brightness,
any non-zero value turns it on. The file called trigger lists the events 
that trigger the LED to turn on. The list of triggers is implementation-dependent. Here 
is an example:

# cat trigger

none mmc0 mmc1 timer oneshot heartbeat backlight gpio [cpu0]

default-on

The trigger currently selected is shown in square brackets. You can change it by writing one
of the other triggers to the file. If you want to control the LED entirely through brightness,
select none. If you set trigger to timer, two extra files will appear that allow you to set the
on and off times in milliseconds:

# echo timer > trigger

# ls

brightness delay_on max_brightness subsystem uevent

delay_off device power trigger

# cat delay_on

500

# cat /sys/class/leds/beaglebone:green:heartbeat/delay_off

500

If the LED has on-chip timer hardware, the blinking takes place without interrupting 
the CPU.

I2C
I2C is a simple low speed 2-wire bus that is common on embedded boards, typically used to
access peripherals that are not on the SoC, such as display controllers, camera sensors,
GPIO extenders, and so on. There is a related standard known as system management bus
(SMBus) that is found on PCs, which is used to access temperature and voltage sensors.
SMBus is a subset of I2C.



I2C is a master-slave protocol, with the master being one or more host controllers on the
SoC. Slaves have a 7-bit address assigned by the manufacturer (read the data sheet),
allowing up to 128 nodes per bus, but 16 are reserved, so only 112 nodes are allowed in
practice. The master may initiate read or write transactions with one of the slaves.
Frequently, the first byte is used to specify a register on the slave, while the remaining bytes
are the data that's read from or written to that register.
There is one device node for each host controller; for example, this SoC has four:

# ls -l /dev/i2c*

crw-rw---- 1 root i2c 89, 0 Jan 1 00:18 /dev/i2c-0

crw-rw---- 1 root i2c 89, 1 Jan 1 00:18 /dev/i2c-1

crw-rw---- 1 root i2c 89, 2 Jan 1 00:18 /dev/i2c-2

crw-rw---- 1 root i2c 89, 3 Jan 1 00:18 /dev/i2c-3

The device interface provides a series of ioctl commands that query the host controller
and send the read and write commands to I2C slaves. There is a package named i2c-
tools, which uses this interface to provide basic command-line tools to interact with I2C
devices. The tools are as follows:

i2cdetect: This lists the I2C adapters and probes the bus.
i2cdump: This dumps data from all the registers of an I2C peripheral.
i2cget: This reads data from an I2C slave.
i2cset: This writes data to an I2C slave.

The i2c-tools package is available in Buildroot and the Yocto Project, as well as most
mainstream distributions. So, as long as you know the address and protocol of the slave,
writing a user space program to talk to the device is straightforward. The example that
follows shows how to read the first four bytes from the AT24C512B EEPROM, which is
mounted on the BeagleBone Black on I2C bus 0. It has a slave address of 0x50 (the code for
this is in MELP/Chapter11/i2c-example):

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

#include <sys/ioctl.h>

#include <linux/i2c-dev.h>

#define I2C_ADDRESS 0x50

int main(void)

{

   int f;

   int n;

   char buf[10];

   f = open("/dev/i2c-0", O_RDWR);

   /* Set the address of the i2c slave device */

   ioctl(f, I2C_SLAVE, I2C_ADDRESS);

   /* Set the 16-bit address to read from to 0 */



   buf[0] = 0; /* address byte 1 */

   buf[1] = 0; /* address byte 2 */

   n = write(f, buf, 2);

   /* Now read 4 bytes from that address */

   n = read(f, buf, 4);

   printf("0x%x 0x%x0 0x%x 0x%x\n",

   buf[0], buf[1], buf[2], buf[3]);

   close(f);

   return 0;

}

This program is like i2cget except that the address and register bytes being read from are
both hardcoded rather than passed in as arguments. We can use i2cdetect to discover the
addresses of any peripherals on an I2C bus. i2cdetect can leave I2C peripherals in a bad
state or lock up the bus, so it's good practice to reboot after using it. A peripheral's data
sheet tells us what the registers map to. With that information, we can then use i2cset to
write to its registers over I2C. These I2C commands can easily be converted into a library
of C functions for interfacing with the peripheral.

IMPORTANT NOTE
There is more information about the Linux implementation of I2C in
Documentation/i2c/dev-interface. The host controller drivers are in
drivers/i2c/busses.
Another popular communication protocol is the Serial Peripheral Interface (SPI), which
utilizes a 4-wire bus.

SPI
The SPI bus is similar to I2C but is a lot faster by up to tens of MHz. The interface uses
four wires with separate send and receive lines, which allow it to operate in full duplex.
Each chip on the bus is selected with a dedicated chip select line. It is commonly used to
connect to touchscreen sensors, display controllers, and serial NOR flash devices.
As with I2C, it is a master-slave protocol, with most SoCs implementing one or more
master host controllers. There is a generic SPI device driver, which you can enable through
the CONFIG_SPI_SPIDEV kernel configuration. It creates a device node for each SPI
controller, which allows you to access SPI chips from the user space. The device nodes are
named spidev[bus].[chip select]:

# ls -l /dev/spi*

crw-rw---- 1 root root 153, 0 Jan 1 00:29 /dev/spidev1.0

For examples of using the spidev interface, please refer to the example code in
Documentation/spi.
So far, the device drivers we've seen all have longstanding upstream support within the
Linux kernel. Because these device drivers are all generic (GPIO, LEDs, I2C, and SPI),



accessing them from the user space is straightforward. At some point, you will encounter a
piece of hardware that lacks a compatible kernel device driver. That hardware may be the
centerpiece of your product (for example, Lidar, SDR, and so on). There may also be an
FPGA in-between the SoC and this hardware. Under these circumstances, you may have no
other recourse than to write your own kernel module(s).

Writing a kernel device driver
Eventually, when you have exhausted all the previous user space options, you will find
yourself having to write a device driver to access a piece of hardware attached to your
device. Character drivers are the most flexible and should cover 90% of all your needs;
network drivers apply if you are working with a network interface and block drivers are for
mass storage. The task of writing a kernel driver is complex and beyond the scope of this
book. There are some references at the end that will help you on your way. In this section, I
want to outline the options available for interacting with a driver – a topic not normally
covered – and show you the bare bones of a character device driver.

Designing a character driver interface
The main character driver interface is based on a stream of bytes, as you would have with a
serial port. However, many devices don't fit this description: a controller for a robot arm
needs functions to move and rotate each joint, for example. Luckily, there are other ways to
communicate with device drivers than just read and write:

ioctl: The ioctl function allows you to pass two arguments to your driver, 
and these can have any meaning you like. By convention, the first argument is 
a command, which selects one of several functions in your driver, while the second is a
pointer to a structure, which serves as a container for the input and output parameters.
This is a blank canvas that allows you to design any program interface you like. It is
pretty common when the driver and application are closely linked and written by the
same team. However, ioctl is deprecated in the kernel, and you will find it hard to get
any drivers with new uses of ioctl accepted upstream. The kernel maintainers dislike
ioctl because it makes kernel code and application code too interdependent, and it is
hard to keep both of them in step across kernel versions and architectures.
sysfs: This is the preferred way to do things now, with a good example being the
GPIO interface described earlier. The advantages are that it is somewhat self-
documenting, so long as you choose descriptive names for the files. It is also scriptable
because the file's content is usually text strings. On the other hand, the requirement for
each file to contain a single value makes it hard to achieve atomicity if you need to
change more than one value at a time. Conversely, ioctl passes all its arguments in a
structure, in a single function call.



mmap: You can get direct access to kernel buffers and hardware registers by mapping
kernel memory into user space, thus bypassing the kernel. You may still need some
kernel code to handle interrupts and DMA. There is a subsystem that encapsulates this
idea, known as uio, which is short for user I/O. There is more documentation in
Documentation/DocBook/uio-howto, and there are example drivers in drivers/uio.
sigio: You can send a signal from a driver using the kernel function named
kill_fasync() to notify applications of an event, such as input becoming ready or an
interrupt being received. By convention, the signal called SIGIO is used, but it could be
any. You can see some examples in the UIO driver, drivers/uio/uio.c, and in the
RTC driver, drivers/char/rtc.c. The main problem is that it is difficult to write
reliable signal handlers in the user space, and so it remains a little-used facility.
debugfs: This is another pseudo filesystem that represents kernel data as files and
directories, similar to proc and sysfs. The main distinction is that debugfs must not
contain information that is needed for the normal operation of the system; it is for
debug and trace information only. It is mounted as mount -t debugfs debug

/sys/kernel/debug. There is a good description of debugfs in the
Documentation/filesystems/debugfs.txt kernel documentation.
proc: The proc filesystem is deprecated for all new code unless it relates to processes,
which was the original intended purpose for the filesystem. However, you can use
proc to publish any information you choose. And, unlike sysfs and debugfs, it is
available to non-GPL modules.
netlink: This is a socket protocol family. AF_NETLINK creates a socket that links the
kernel space to the user space. It was originally created so that network tools could
communicate with the Linux network code to access the routing tables and other
details. It is also used by udev to pass events from the kernel to the udev daemon. It is
very rarely used in general device drivers.

There are many examples of all of the preceding filesystems in the kernel source code, and
you can design really interesting interfaces to your driver code. The only universal rule is
the principle of least astonishment. In other words, application writers who are using your
driver should find that everything works in a logical way, without any quirks or oddities.

The anatomy of a device driver
It's time to draw some threads together by looking at the code for a simple device driver.
Here is the start of a device driver named dummy, which creates four devices that can be
accessed through /dev/dummy0 to /dev/dummy3:

#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/init.h>

#include <linux/fs.h>

#include <linux/device.h>



#define DEVICE_NAME "dummy"

#define MAJOR_NUM 42

#define NUM_DEVICES 4

static struct class *dummy_class;

Next, we will define the dummy_open(), dummy_release(), dummy_read(), and
dummy_write() functions for the character device interface:

static int dummy_open(struct inode *inode, struct file *file)

{

   pr_info("%s\n", __func__);

   return 0;

}

static int dummy_release(struct inode *inode, struct file *file)

{

   pr_info("%s\n", __func__);

   return 0;

}

static ssize_t dummy_read(struct file *file,

char *buffer, size_t length, loff_t * offset)

{

   pr_info("%s %u\n", __func__, length);

   return 0;

}

static ssize_t dummy_write(struct file *file,

const char *buffer, size_t length, loff_t * offset)

{

   pr_info("%s %u\n", __func__, length);

   return length;

}

After that, we need to initialize a file_operations structure and define the 
dummy_init() and dummy_exit() functions, which are called when the driver is loaded and
unloaded:

struct file_operations dummy_fops = {

   .owner = THIS_MODULE,

   .open = dummy_open,

   .release = dummy_release,

   .read = dummy_read,

   .write = dummy_write,

};

int __init dummy_init(void)

{

   int ret;

   int i;

   printk("Dummy loaded\n");

   ret = register_chrdev(MAJOR_NUM, DEVICE_NAME, &dummy_fops);



   if (ret != 0)

      return ret;

   dummy_class = class_create(THIS_MODULE, DEVICE_NAME);

   for (i = 0; i < NUM_DEVICES; i++) {

      device_create(dummy_class, NULL,

                    MKDEV(MAJOR_NUM, i), NULL, "dummy%d", i);

   }

   return 0;

}

void __exit dummy_exit(void)

{

   int i;

   for (i = 0; i < NUM_DEVICES; i++) {

      device_destroy(dummy_class, MKDEV(MAJOR_NUM, i));

   }

   class_destroy(dummy_class);

   unregister_chrdev(MAJOR_NUM, DEVICE_NAME);

   printk("Dummy unloaded\n");

}

At the end of the code, the macros called module_init and module_exit specify the
functions to be called when the module is loaded and unloaded:

module_init(dummy_init);

module_exit(dummy_exit);

The closing three macros named MODULE_* add some basic information about the module:
MODULE_LICENSE("GPL");

MODULE_AUTHOR("Chris Simmonds");

MODULE_DESCRIPTION("A dummy driver");

This information can be retrieved from the compiled kernel module using the modinfo
command. The complete source code for the driver can be found in the
MELP/Chapter11/dummy-driver directory, which is included with this book's code archive.
When the module is loaded, the dummy_init() function is called. You can see the point at
which it becomes a character device when is makes the call to register_chrdev, passing a
pointer to struct file_operations, which contains pointers to the four functions that the
driver implements. While register_chrdev tells the kernel that there is a driver with a
major number of 42, it doesn't say anything about the class of driver, and so it will not
create an entry in /sys/class.
Without an entry in /sys/class, the device manager cannot create device nodes. So, the
next few lines of code create a device class, dummy, and four devices of that class called
dummy0 to dummy3. The result is that the /sys/class/dummy directory is created when the
driver is initialized, containing subdirectories dummy0 to dummy3. Each of the subdirectories
contains a file, dev, that contains the major and minor numbers of the device. This is all that
a device manager needs to create device nodes: /dev/dummy0 to 
/dev/dummy3.



The dummy_exit() function has to release the resources claimed by dummy_init(), which
here means freeing up the device class and major number.
The file operations for this driver are implemented by dummy_open(), dummy_read(),
dummy_write(), and dummy_release(), and they are called when a user space program calls
open(2), read(2), write(2), and close(2), respectively. They just print a kernel message
so that you can see that they were called. You can demonstrate this from the command line
using the echo command:

# echo hello > /dev/dummy0

dummy_open

dummy_write 6

dummy_release

In this case, the messages appear because I was logged onto the console, and kernel
messages are printed to the console by default. If you are not logged onto the console, you
can still see the kernel messages by using the dmesg command.
The full source code for this driver is less than 100 lines, but it is enough to illustrate how
the linkage between a device node and driver code works; how the device class is created,
allowing a device manager to create device nodes automatically when the driver is loaded;
and how the data is moved between the user and kernel spaces. Next, you need to build it.

Compiling kernel modules
At this point, you have some driver code that you want to compile and test on your target
system. You can copy it into the kernel source tree and modify makefiles to build it, or you
can compile it as a module out of tree. Let's start by building out of tree.
You will need a simple makefile that uses the kernel build system to do all the hard work:

LINUXDIR := $(HOME)/MELP/build/linux

obj-m := dummy.o

all:

     make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabihf- \

     -C $(LINUXDIR) M=$(shell pwd)

clean:

     make -C $(LINUXDIR) M=$(shell pwd) clean

Set LINUXDIR to the directory of the kernel for your target device that you will be running
the module on. The obj-m := dummy.o code will invoke the kernel build rule to take the
source file, dummy.c, and create a kernel module, dummy.ko. I will show you how to load
kernel modules in the next section.

IMPORTANT NOTE
Kernel modules are not binary compatible between kernel releases and configurations: the
module will only load on the kernel it was compiled with.



If you want to build a driver in the kernel source tree, the procedure is quite simple. Choose
a directory appropriate to the type of driver you have. The driver is a basic character device,
so I would put dummy.c in drivers/char. Then, edit the makefile in the directory, and add a
line to build the driver unconditionally as a module, as follows:

obj-m += dummy.o

Alternatively, you can add the following line to build it unconditionally as a builtin:
obj-y += dummy.o

If you want to make the driver optional, you can add a menu option to the Kconfig 
file and make the compilation conditional on the configuration option, as I described 
in Chapter 4, Configuring and Building the Kernel, in the Understanding kernel
configuration section.

Loading kernel modules
You can load, unload, and list modules using the simple insmod, lsmod, and rmmod
commands, respectively. Here, they are loading the dummy driver:

# insmod /lib/modules/4.8.12-yocto-standard/kernel/drivers/dummy.ko

# lsmod

Tainted: G

dummy 2062 0 - Live 0xbf004000 (O)

# rmmod dummy

If the module is placed in a subdirectory in /lib/modules/<kernel release>, you can
create a modules dependency database using the depmod -a command, like so:

# depmod -a

# ls /lib/modules/4.8.12-yocto-standard

kernel   modules.alias   modules.dep   modules.symbols

The information in the modules.* files is used by the modprobe command to locate a
module by name rather than its full path. modprobe has many other features, all of which are
described on the modprobe(8) manual page.
Now that we have written and loaded our dummy kernel module, how do we get it to talk to
some real piece of hardware? We need to bind our driver to that hardware either by way of
the device tree or platform data. Discovering hardware and linking that hardware to a
device driver is the topic of the next section.

Discovering the hardware configuration
The dummy driver demonstrates the structure of a device driver, but it lacks interaction
with real hardware since it only manipulates memory structures. Device drivers are usually
written to interact with hardware. Part of that is being able to discover the hardware in the
first place, bearing in mind that it may be at different addresses in different configurations.



In some cases, the hardware provides the information itself. Devices on a discoverable bus
such as PCI or USB have a query mode, which returns resource requirements and a unique
identifier. The kernel matches the identifier and possibly other characteristics with the
device drivers and marries them up.
However, most of the hardware blocks on an embedded board do not have such identifiers.
You have to provide the information yourself in the form of a device tree or as C structures
known as platform data.
In the standard driver model for Linux, device drivers register themselves with the
appropriate subsystem: PCI, USB, open firmware (device tree), platform device, and so on.
The registration includes an identifier and a callback function, called a probe function, that
is called if there is a match between the ID of the hardware and the ID of the driver. For
PCI and USB, the ID is based on the vendor and the product IDs of the devices; for device
trees and platform devices, it is a name (a text string).

Device trees
I gave you an introduction to device trees in Chapter 3, All About Bootloaders. Here, I want
to show you how the Linux device drivers hook up with this information.
As an example, I will use the Arm Versatile board, arch/arm/boot/dts/versatile-
ab.dts, for which the Ethernet adapter is defined here:

net@10010000 {

   compatible = "smsc,lan91c111";

   reg = <0x10010000 0x10000>;

   interrupts = <25>;

};

Pay special attention to the compatible property of this node. This string value will
reappear later in the source code for the Ethernet adapter. We will learn more about device
trees in Chapter 12, Prototyping with Breakout Boards.

The platform data
In the absence of device tree support, there is a fallback method of describing hardware
using C structures, known as the platform data.
Each piece of hardware is described by struct platform_device, which has a name and a
pointer to an array of resources. The resource's type is determined by flags, which include
the following:

IORESOURCE_MEM: This is the physical address of a region of memory.
IORESOURCE_IO: This is the physical address or port number of I/O registers.
IORESOURCE_IRQ: This is the interrupt number.



Here is an example of the platform data for an Ethernet controller taken from
arch/arm/machversatile/core.c, which has been edited for clarity:

#define VERSATILE_ETH_BASE 0x10010000

#define IRQ_ETH 25

static struct resource smc91x_resources[] = {

[0] = {

   .start = VERSATILE_ETH_BASE,

   .end = VERSATILE_ETH_BASE + SZ_64K - 1,

   .flags = IORESOURCE_MEM,

},

[1] = {

   .start = IRQ_ETH,

   .end = IRQ_ETH,

   .flags = IORESOURCE_IRQ,

},

};

static struct platform_device smc91x_device = {

  .name = "smc91x",

  .id = 0,

  .num_resources = ARRAY_SIZE(smc91x_resources),

  .resource = smc91x_resources,

};

It has a memory area of 64 KB and an interrupt. The platform data has to be registered with
the kernel, usually when the board is initialized:

void __init versatile_init(void)

{

   platform_device_register(&versatile_flash_device);

   platform_device_register(&versatile_i2c_device);

   platform_device_register(&smc91x_device);

   […]

The platform data shown here is functionally equivalent to the previous device tree source,
except for the name field, which takes the place of the compatible property.

Linking hardware with device drivers
In the preceding section, you saw how an Ethernet adapter is described using a device tree
and using platform data. The corresponding driver code is in
drivers/net/ethernet/smsc/smc91x.c, and it works with both the device tree and
platform data. Here is the initialization code, once again edited for clarity:

static const struct of_device_id smc91x_match[] = {

   { .compatible = "smsc,lan91c94", },

   { .compatible = "smsc,lan91c111", },



   {},

};

MODULE_DEVICE_TABLE(of, smc91x_match);

static struct platform_driver smc_driver = {

   .probe = smc_drv_probe,

   .remove = smc_drv_remove,

   .driver = {

      .name = "smc91x",

      .of_match_table = of_match_ptr(smc91x_match),

   },

};

static int __init smc_driver_init(void)

{

   return platform_driver_register(&smc_driver);

}

static void __exit smc_driver_exit(void)

{

   platform_driver_unregister(&smc_driver);

}

module_init(smc_driver_init);

module_exit(smc_driver_exit);

When the driver is initialized, it calls platform_driver_register(), pointing to struct
platform_driver, in which there is a callback to a probe function, a driver name, smc91x,
and a pointer to struct of_device_id.
If this driver has been configured by the device tree, the kernel will look for a match
between the compatible property in the device tree node and the string being pointed to by
the compatible structure element. For each match, it calls the probe function.
On the other hand, if it was configured through platform data, the probe function will be
called for each match on the string pointed to by driver.name.
The probe function extracts information about the interface:

static int smc_drv_probe(struct platform_device *pdev)

{

   struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);

   const struct of_device_id *match = NULL;

   struct resource *res, *ires;

   int irq;

   res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

   ires platform_get_resource(pdev, IORESOURCE_IRQ, 0);

   […]

   addr = ioremap(res->start, SMC_IO_EXTENT);

   irq = ires->start;

   […]

}



The calls to platform_get_resource() extract the memory and irq information from
either the device tree or the platform data. It is up to the driver to map the memory and
install the interrupt handler. The third parameter, which is zero in both of the previous
cases, comes into play if there is more than one resource of that particular type.
Device trees allow you to configure more than just basic memory ranges and interrupts.
There is a section of code in the probe function that extracts optional parameters from the
device tree. In this snippet, it gets the register-io-width property:

match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);

if (match) {

   struct device_node *np = pdev->dev.of_node;

   u32 val;

   […]

   of_property_read_u32(np, "reg-io-width", &val);

   […]

}

For most drivers, specific bindings are documented in
Documentation/devicetree/bindings. For this particular driver, the information is in
Documentation/devicetree/bindings/net/smsc911x.txt.
The main thing to remember here is that drivers should register a probe function and
enough information for the kernel to call probe, as it finds matches with the hardware it
knows about. The linkage between the hardware described by the device tree and the device
driver is done through the compatible property. The linkage between platform data and a
driver is done through the name.

Summary
Device drivers have the job of handling devices, usually physical hardware but sometimes
virtual interfaces, and presenting them to the user space in a consistent and useful way.
Linux device drivers fall into three broad categories: character, block, and network. Of the
three, the character driver interface is the most flexible and therefore, the most common.
Linux drivers fit into a framework known as the driver model, which is exposed through
sysfs. Pretty much the entire state of the devices and drivers is visible in /sys.
Each embedded system has its own unique set of hardware interfaces and requirements.
Linux provides drivers for most standard interfaces, and by selecting the right kernel
configuration, you can get a working target board very quickly. This leaves you with the
non-standard components, for which you will have to add your own device support.
In some cases, you can sidestep the issue by using generic drivers for GPIO, I2C, and so on,
and write user space code to do the work. I recommend this as a starting point, as it gives
you the chance to become familiar with the hardware without writing kernel code. Writing
kernel drivers is not particularly difficult, but you do you need to code carefully so as not to
compromise the stability of the system.



So far, I have talked about writing the kernel driver code; if you go down this route, you
will inevitably want to know how to check whether it is working correctly and detect any
bugs. I will cover that topic in Chapter 19, Debugging with GDB.
The next chapter is all about user space initialization and the different options you have for
the init program, from the simple BusyBox to more complex systems.

Further reading
The following resources contain further information about the topics that were introduced
in this chapter:

Linux Kernel Development, 3rd Edition, by Robert Love
Linux Weekly News: https://lwn.net/Kernel
Async IO on Linux: select, poll, and epoll, by Julia Evans:
https://jvns.ca/blog/2017/06/03/async-io-on-linux--select--poll--and-epoll
Essential Linux Device Drivers, 1st Edition, by Sreekrishnan Venkateswaran

https://lwn.net/Kernel
https://jvns.ca/blog/2017/06/03/async-io-on-linux--select--poll--and-epoll


Chapter 12: Prototyping with Breakout Boards
Custom board bring-up is what embedded Linux engineers are called on to do time and
time again. A consumer electronics manufacturer wants to build a new device and, more
often than not, that device needs to run Linux. The process of assembling the Linux image
typically starts before the hardware is ready, and is done using prototypes that are wired
together from development and breakout boards. Peripheral I/O pins need to be muxed into
device tree bindings for working communications. Only then can the task of coding
middleware for an application begin.
Our goal in this chapter is to add a u-blox GPS module to the BeagleBone Black. This
requires reading schematics and data sheets so that necessary modifications to the device
tree source can be generated using Texas Instruments' SysConfig tool. Next, we will wire
up a SparkFun GPS Breakout board to the BeagleBone Black and probe the connected SPI
pins with a logic analyzer. Lastly, we will compile and run test code on the BeagleBone
Black so that we can receive NMEA sentences from the ZOE-M8Q GPS module over SPI.
Rapid prototyping with real hardware involves lots of trial and error. In this chapter, we will
get hands-on experience with soldering and assemble a test bench to study and debug
digital signals. We will also revisit device tree source, but this time, we will pay special
attention to the pin control configurations and how to utilize them to enable external or
onboard peripherals. With a full Debian Linux distribution at our disposal, we can use tools
such as git, gcc, pip3, and python3 to develop software directly on the BeagleBone Black.
In this chapter, we will cover the following topics:

Mapping schematics to the device tree's source
Prototyping with breakout boards
Probing SPI signals with a logic analyzer
Receiving NMEA messages over SPI

Let's get started!

Technical requirements
To follow along with the examples in this chapter, make sure you have the following:

A Linux-based host system
A Buildroot 2020.02.9 LTS release
Etcher for Linux
A microSD card reader and card
A USB to TTL 3.3V serial cable



A BeagleBone Black
A 5V 1A DC power supply
An Ethernet cable and port for network connectivity
A SparkFun model GPS-15193 Breakout
A row (12 or more pins) of straight breakaway headers
A soldering iron kit
Six male to female jumper wires
A U.FL GNSS antenna

You should have already installed the 2020.02.9 release of Buildroot in Chapter 6,
Selecting a Build System. If you have not, then refer to the System requirements section of
the The Buildroot user manual (https://buildroot.org/downloads/manual/manual.html)
before installing Buildroot on your Linux host according to the instructions 
from Chapter 6.
A logic analyzer helps with troubleshooting and understanding SPI communications. 
I will be using the Saleae Logic 8 for demonstration purposes. I realize Saleae products are
prohibitively expensive ($399 and up), so if you do not already own a Saleae logic analyzer,
you can still get through this chapter without one. There are more affordable low-speed
alternatives (http://dangerousprototypes.com/docs/Bus_Pirate) that are sufficient for SPI
and I2C debugging, but I won't cover them in this book.
All the code for this chapter can be found in the Chapter12 folder of this book's GitHub
repository: https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-
Third-Edition.

Mapping schematics to the device tree's source
Because the BeagleBone Black's Bill Of Materials (BOM), PCB design files, and
schematics are all open source, anyone can manufacture a BeagleBone Black as part of
their consumer product. Since the BeagleBone Black is intended for development, it
contains several components that may not be needed for production, such as an Ethernet
cable, a USB port, and a microSD slot. As a dev board, the BeagleBone Black may also be
missing one or more peripherals needed for your application such as sensors, an LTE
modem, or an OLED display.
The BeagleBone Black is built around Texas Instruments' AM335x, a single core 32-bit
ARM Cortex-A8 SoC with dual Programmable Real-Time Units (PRU). There is a more
expensive Wireless variant of the BeagleBone Black made by Octavo Systems that swaps
out Ethernet with a Wi-Fi and Bluetooth module. The BeagleBone Black Wireless is also
open source hardware, but at some point, you may want to design your own custom PCB
around the AM335x. Designing a daughterboard (known as a "cape") for the BeagleBone
Black is also an option.

https://buildroot.org/downloads/manual/manual.html
http://dangerousprototypes.com/docs/Bus_Pirate
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


For our purposes, we will integrate a u-blox ZOE-M8Q GPS module into a networked
device. If you need to transfer lots of packets from a local network to and from the cloud,
then running Linux is a sensible choice since it has an extremely mature TCP/IP network
stack. The BeagleBone Black's ARM Cortex-A8 CPU meets the requirements (enough
addressable RAM and a memory management unit) for running mainstream Linux. This
means our product can benefit from security and bug fixes that have been made to the
Linux kernel.
In Chapter 11, Interfacing with Device Drivers, we looked at an example of how to bind an
Ethernet adapter to a Linux device driver. Binding peripherals is done with device tree
source or C structs known as platform data. Over the years, using device tree source has
become the preferred means of binding to Linux device drivers, especially on ARM SoCs.
For these reasons, the examples in this chapter only involve device tree source. Like U-
Boot, compiling device tree source into DTBs is also part of the Linux kernel build process.
Before we can start modifying the device tree source, we need to get acquainted with the
schematics for the BeagleBone Black and SparkFun ZOE-M8Q GPS Breakout.

Reading schematics and data sheets
The BeagleBone Black has 2 x 46 pin expansion headers for I/O. These headers include
UART, I2C, and SPI communications ports, in addition to numerous GPIOs. Most GPS
modules, including ours, can send NMEA data over serial UARTs or I2C. Even though
many user space GPS tools, such as gpsd, only work with modules connected via serial, I
chose a GPS module with an SPI interface for this project. The BeagleBone Black has two
SPI buses available. We only need one of these SPI buses to connect the u-blox ZOE-M8Q.
I chose SPI over UART and I2C for two reasons: UARTs are scarce on many SoCs and
needed for things such as Bluetooth and/or a serial console; I2C drivers and hardware can
have serious bugs. Some I2C kernel drivers are so poorly implemented that the bus locks up
when there are too many connected peripherals talking. The I2C controllers found in
Broadcom SoCs, such as the one in the Raspberry Pi 4, are notorious for glitching when
peripherals attempt to perform clock stretching.
Here is a map of the pins on the BeagleBone Black's P9 expansion header:



Figure 12.1 – P9 expansion header SPI ports

Pins 17, 18, 21, and 22 are assigned to the SPI0 bus. Pins 19, 20, 28, 29, 30, 31, and 42 are
assigned to the SPI1 bus. Notice that pins 42 and 28 duplicate the functionality of pins 19
and 20 for SPI1. We can only utilize one pin for either SPI1_CS1 and SPI1_CS0. Any
duplicate pins should be disabled or repurposed. Also, notice that SPI1 has CS0 and CS1
pins, whereas SPI0 only has a CS0 pin. CS stands for chip select. Since each SPI bus is a
master-slave interface, pulling a CS signal line low typically selects which peripheral to
transmit to on the bus. This kind of negative logic is known as "active low".
Here is a block diagram of the BeagleBone Black's SPI1 bus with two peripherals attached:



Figure 12.2 – SPI1 bus

If we look at the Beagle Bone Black's schematic
(https://github.com/beagleboard/beaglebone-black/blob/master/BBB_SCH.pdf), we will 
see that four pins (28 to 31) on the P9 expansion header are labeled for SPI1:

https://github.com/beagleboard/beaglebone-black/blob/master/BBB_SCH.pdf


Figure 12.3 – P9 expansion header schematic

The extra SPI1 pins (19, 20, and 42) and all of the SPI0 pins (17, 18, 21, and 22) have been
repurposed for I2C1, I2C2, and UART2 on the schematic. This alternate mapping is the
result of pin mux configurations defined within the device tree source files. To route the
missing SPI signal lines from the AM335x to their respective target pins on the expansion
header, the proper pin mux configurations must be applied. Pin muxing can be done at
runtime for prototyping but should transition to compile time before the finished hardware
arrives.
In addition to CS0, you will notice that the SPI0 bus also has SCLK, D0, and D1 lines.
SCLK stands for SPI clock and is always generated by the bus master, which is the
AM335x in this case. Data transmitted over the SPI bus is synchronized to this SCLK
signal. SPI supports much higher clock frequencies than I2C. The D0 data line corresponds
to master in, slave out (MISO). The D1 data line corresponds to master out, slave in



(MOSI). While both D0 and D1 can be assigned to either MISO or MOSI in software, we
will stick with these default mappings. SPI is a full-duplex interface, which means that
both the master and selected slave can send data at the same time.
Here is a block diagram showing the directions of all four SPI signals:

Figure 12.4 – SPI signals

Now, let's turn our attention away from the BeagleBone Black to the ZOE-M8Q. We'll start
with the ZOE-M8 series data sheet, which can be downloaded from u-blox's product page at
https://www.u-blox.com/en/product/zoe-m8-series. Jump to the section describing SPI. It
says that SPI is disabled by default because its pins are shared with the UART and DDC
interfaces. To enable SPI on the ZOE-M8Q, we must connect the D_SEL pin to the ground.
Pulling down D_SEL converts the two UART and two DDC pins into four SPI pins.
Locate the schematic for the SparkFun ZOE-M8Q GPS Breakout by selecting the
"Documents" tab from the product page at https://www.sparkfun.com/products/15193.
Searching for the D_SEL pin reveals that it is on the left-hand side of the jumper labeled
JP1. Closing the jumper connects D_SEL to GND, thereby enabling SPI:

https://www.u-blox.com/en/product/zoe-m8-series
https://www.sparkfun.com/products/15193


Figure 12.5 – D_SEL jumper and SPI connectors on the GPS breakout

The connectors for the CS, CLK, MOSI, and MISO pins are co-located with 3.3V and
GND. Closing the jumper and attaching the headers to the six pins will require some
soldering.
Always check the pin ratings when interconnecting chips or modules. The JP2 jumper on
the GPS Breakout connects the SCL/CLK and SDA/CS pins to 2.2kΩ pull up resistors. The
AM335x data sheet says these output pins are 6mA drivers, so enabling their weak internal
pull ups adds 100µA of pull up current. The ZOE-M8Q has an 11kΩ pull up on the same
pins, adding 300µA at 3.3V. The 2.2kΩ I2C pull ups on the GPS Breakout add another
1.5mA for a total of 1.9mA of pull up current, which is okay.
Returning to Figure 12.1, notice that the BeagleBone Black supplies 3.3V from pins 3 and
4 of its P9 expansion header. Pins 1 and 2 and 43 to 46 are tied to GND. In addition to
connecting the four SPI lines on the GPS Breakout to pins 17, 18, 21, and 22, we will also
wire the GPS module's 3.3V and GND to pins 3 and 43 on the BeagleBone Black's P9
expansion header.
Now that we have some idea of how to connect the ZOE-M8Q, let's enable the SPI0 bus on
Linux, which is running on the BeagleBone Black. The quickest way to do this is to install
a prebuilt Debian image from BeagleBoard.org.

Installing Debian on the BeagleBone Black
BeagleBoard.org provides Debian images for their various dev boards. Debian is 
a popular Linux distribution that includes a comprehensive set of open source software
packages. It is a massive effort with contributors from all over the world. Building Debian
for the various BeagleBoards is unconventional by embedded Linux standards because the
process does not rely on cross-compilation. Rather than attempting to build Debian for the

http://beagleboard.org/
http://beagleboard.org/


BeagleBone Black yourself, simply download a finished image directly from
BeagleBoard.org.
To download the Debian Buster IoT microSD card image for the BeagleBone Black, issue
the following command:

$ wget https://debian.BeagleBoard.org/images/bone-debian-10.3-iot-armhf-
2020-04-06-4gb.img.xz

10.3 was the latest Debian image for AM335x-based BeagleBone boards at the time of
writing. The major version number of 10 indicates that 10.3 is a Buster LTS release of
Debian. Since Debian 10.0 was originally released on July 6, 2019, it should receive
updates for up to 5 years from that date.

IMPORTANT NOTE
If possible, download version 10.3 (also known as Buster) rather than the latest Debian
image from BeagleBoard.org for the exercises in this chapter. The BeagleBone bootloader,
kernel, DTBs, and command-line tools are in constant flux, so the instructions may not
work with a later Debian release.
Now that we have a Debian image for the BeagleBone Black, let's write it out to a microSD
card and boot it. Locate the bone-debian-10.3-iot-armhf-2020-04-06-4gb.img.xz file
that you downloaded from BeagleBoard.org from Etcher and write it out to a microSD card.
Insert the microSD card into your BeagleBone Black and power it up with a 5V power
supply. Next, plug the Ethernet cable from the BeagleBone Black into a free port on your
router with an Ethernet cable. When the onboard Ethernet lights start blinking, your
BeagleBone Black should be online. Internet access allows us to install packages and fetch
code from Git repos from within Debian.
To ssh into the BeagleBone Black from your Linux host, use the following code:

$ ssh debian@beaglebone.local

Enter temppwd at the debian user's password prompt.

IMPORTANT NOTE
Many BeagleBone Blacks come with Debian already installed on the onboard flash, so they
will still boot, even without a microSD card inserted. If the BeagleBoard.org Debian
Buster IoT Image 2020-04-06 message is displayed before the password prompt, then the
BeagleBone Black was booted from the Debian 10.3 image on the microSD. If a different
Debian release message is displayed before the password prompt, then verify whether or
not the microSD card is properly inserted.
Now that we're on the BeagleBone Black, let's look at what SPI interfaces are available.

Enabling spidev
Linux comes with a user space API that provides read() and write() access to 
SPI devices. This user space API is known as spidev and is included in the Debian Buster

http://beagleboard.org/
http://beagleboard.org/
http://beagleboard.org/
http://beagleboard.org/


image for the BeagleBone Black. We can confirm this by searching for the 
spidev kernel module:

debian@beaglebone:~$ lsmod | grep spi

spidev                 20480  0

Now, list the available SPI peripheral addresses:
$ ls /dev/spidev*

/dev/spidev0.0  /dev/spidev0.1  /dev/spidev1.0  /dev/spidev1.1

The /dev/spidev0.0 and /dev/spidev0.1 nodes are on the SPI0 bus, while the 
/dev/spidev1.0 and /dev/spidev1.1 nodes are on the SPI1 bus. We only need the SPI0
bus for this project.
U-Boot loads overlays on top of the device tree for the BeagleBone Black. We can select
which device tree overlays to load by editing U-Boot's uEnv.txt configuration file:

$ cat /boot/uEnv.txt

#Docs: http://elinux.org/Beagleboard:U-boot_partitioning_layout_2.0

uname_r=4.19.94-ti-r42

.

.

.

###U-Boot Overlays###

###Documentation:
http://elinux.org/Beagleboard:BeagleBoneBlack_Debian#U-Boot_Overlays

###Master Enable

enable_uboot_overlays=1

###

.

.

.

###Disable auto loading of virtual capes (emmc/video/wireless/adc)

#disable_uboot_overlay_emmc=1

#disable_uboot_overlay_video=1

#disable_uboot_overlay_audio=1

#disable_uboot_overlay_wireless=1

#disable_uboot_overlay_adc=1

.

.

.

###Cape Universal Enable

enable_uboot_cape_universal=1

Confirm that the enable_uboot_overlays and enable_uboot_cape_universal

environment variables are both set to 1. A leading # means that anything after that character
in the line is commented out. For this reason, U-Boot ignores all the
disable_uboot_overlay_<device>=1 statements shown in the preceding code. This



configuration file is applied to U-Boot's environment, so any changes that are saved to
/boot/uEnv.txt require a reboot to take effect.

IMPORTANT NOTE
The audio overlay conflicts with the SPI1 bus on the BeagleBone Black. Uncomment
disable_uboot_overlay_audio=1 in /boot/uEnv.txt if you wish to enable
communications over SPI1.
To list the device tree overlays U-Boot has loaded, use the following commands:

$ cd /opt/scripts/tools

$ sudo ./version.sh | grep UBOOT

UBOOT: Booted Device-Tree:[am335x-boneblack-uboot-univ.dts]

UBOOT: Loaded Overlay:[AM335X-PRU-RPROC-4-19-TI-00A0]

UBOOT: Loaded Overlay:[BB-ADC-00A0]

UBOOT: Loaded Overlay:[BB-BONE-eMMC1-01-00A0]

UBOOT: Loaded Overlay:[BB-NHDMI-TDA998x-00A0]

The cape universal feature (https://github.com/cdsteinkuehler/beaglebone-universal-io) is
unique to the AM3358 version of Debian. It provides access to nearly all of the BeagleBone
Black's hardware I/O without us having to modify the device tree source or rebuild the
kernel. Different pin mux configurations are activated at runtime using the config-pin
command-line tool.
To view all the available pingroups, use the following code:

$ cat /sys/kernel/debug/pinctrl/*pinmux*/pingroups

To view just the SPI pingroups, use the following code:
$ cat /sys/kernel/debug/pinctrl/*pinmux*/pingroups | grep spi

group: pinmux_P9_19_spi_cs_pin

group: pinmux_P9_20_spi_cs_pin

group: pinmux_P9_17_spi_cs_pin

group: pinmux_P9_18_spi_pin

group: pinmux_P9_21_spi_pin

group: pinmux_P9_22_spi_sclk_pin

group: pinmux_P9_30_spi_pin

group: pinmux_P9_42_spi_cs_pin

group: pinmux_P9_42_spi_sclk_pin

Assigning only one pin to a pingroup is unusual. Normally, all the SPI pins (CS, SCLK, D0,
and D1) for a bus are muxed together in the same pingroup. We can confirm this strange
one-to-one pin to group relationship by looking at the device tree source, which is located
inside the /opt/source/dtb-4.19-ti/src/arm directory on the Debian image.
The am335x-boneblack-uboot-univ.dts file in that source directory contains the
following includes:

#include "am33xx.dtsi"

#include "am335x-bone-common.dtsi"

#include "am335x-bone-common-univ.dtsi"

https://github.com/cdsteinkuehler/beaglebone-universal-io


That .dts file, together with the three included .dtsi files, define the device tree source.
The dtc tool compiles these four source files into a am335x-boneblack-uboot-univ.dtb
file. U-Boot also loads device tree overlays on top of this cape universal device tree. These
device tree overlays have .dtbo as their file extension.
Here is the pingroup definition for pinmux_P9_17_spi_cs_pin:

P9_17_spi_cs_pin: pinmux_P9_17_spi_cs_pin { pinctrl-single,pins = <

     AM33XX_IOPAD(0x095c, PIN_OUTPUT_PULLUP | INPUT_EN | MUX_MODE0) >;
};

The pinmux_P9_17_spi_cs_pin group configures pin 17 on the P9 expansion header to act
as a CS pin for the SPI0 bus.
Here is the P9_17_pinmux definition, where pinmux_P9_17_spi_cs_pin is referenced:

/* P9_17 (ZCZ ball A16) */

P9_17_pinmux {

     compatible = "bone-pinmux-helper";

     status = "okay";

     pinctrl-names = "default", "gpio", "gpio_pu", "gpio_pd",
"gpio_input", "spi_cs", "i2c", "pwm", "pru_uart";

     pinctrl-0 = <&P9_17_default_pin>;

     pinctrl-1 = <&P9_17_gpio_pin>;

     pinctrl-2 = <&P9_17_gpio_pu_pin>;

     pinctrl-3 = <&P9_17_gpio_pd_pin>;

     pinctrl-4 = <&P9_17_gpio_input_pin>;

     pinctrl-5 = <&P9_17_spi_cs_pin>;

     pinctrl-6 = <&P9_17_i2c_pin>;

     pinctrl-7 = <&P9_17_pwm_pin>;

     pinctrl-8 = <&P9_17_pru_uart_pin>;

};

Notice that the pinmux_P9_17_spi_cs_pin group is one of nine different ways
P9_17_pinmux can be configured. Since spi_cs is not the default configuration for that pin,
the SPI0 bus is initially disabled.
To enable /dev/spidev0.0, run the following config-pin commands:

$ config-pin p9.17 spi_cs

Current mode for P9_17 is:     spi_cs

$ config-pin p9.18 spi

Current mode for P9_18 is:     spi

$ config-pin p9.21 spi

Current mode for P9_21 is:     spi

$ config-pin p9.22 spi_sclk

Current mode for P9_22 is:     spi_sclk

Rerun the config-pin commands and prefix them with sudo if you encounter permissions
errors. Enter temppwd as password for the debian user. There is a config-spi0.sh script
containing these four config-pin commands under 
MELP/Chapter12 in the book code archive.



Debian comes with Git installed, so you can clone this book's repository to fetch the
archive:

$ git clone https://github.com/PacktPublishing/Mastering-Embedded-Linux-
Programming-Third-Edition.git MELP

To enable /dev/spidev0.0 upon booting your BeagleBone Black, use the 
following command:

$ MELP/Chapter12/config-spi0.sh

The sudo password is the same as the debian login prompt.
The Linux kernel source comes with a spidev_test program. I have included a copy of this
spidev_test.c source file, which I obtained from https://github.com/rm-hull/spidev-test, in
this book's code archive, under MELP/Chapter12/spidev-test.
To compile the spidev_test program, use the following commands:

$ cd MELP/Chapter12/spidev-test

$ gcc spidev_test.c -o spidev_test

Now, run the spidev_test program:
$ ./spidev_test -v

spi mode: 0x0

bits per word: 8

max speed: 500000 Hz (500 KHz)

TX | FF FF FF FF FF FF 40 00 00 00 00 95 FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF F0 0D  | ......@....?..................?.

RX | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00  | ................................

The -v flag is short for --verbose and displays the contents of the TX buffer. This version
of the spidev_test program defaults to using the /dev/spidev0.0 device, so no --device
argument needs to be passed in to select the SPI0 bus. The full-duplex nature of SPI means
that the bus master receives data while transmitting. In this case, the RX buffer contains all
zeros, implying that no data was received. In fact, there is no assurance that any of the data
in the TX buffer was even sent.
Use a jumper wire to connect pin 18 (SPI0_D1) to pin 21 (SPI0_D0) on the BeagleBone
Black's P9 expansion header, as shown here:

https://github.com/rm-hull/spidev-test


Figure 12.6 – SPI0 loopback

The map of the P9 expansion header is oriented so that the header is on the left-hand side of
the BeagleBone Black when the USB port is at the bottom. The jumper wire from SPI0_D1
to SPI0_D0 forms a loopback connection by feeding MOSI (master out) into MISO (master
in).



IMPORTANT NOTE
Don't forget to rerun the config-spi0.sh script after rebooting or power cycling your
BeagleBone Black to re-enable the /dev/spidev0.0 interface.
Rerun the spidev_test program with your loopback connection in place:

$ ./spidev_test -v

spi mode: 0x0

bits per word: 8

max speed: 500000 Hz (500 KHz)

TX | FF FF FF FF FF FF 40 00 00 00 00 95 FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF F0 0D  | ......@.......................

RX | FF FF FF FF FF FF 40 00 00 00 00 95 FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF F0 0D  | ......@.......................

The contents of the RX buffer should now match the contents of the TX buffer. We have
verified that the /dev/spidev0.0 interface is fully functional. For more on runtime pin
muxing, including the origins of the BeagleBone Black's device tree and overlays, I
recommend reading https://cdn-learn.adafruit.com/downloads/pdf/introduction-to-the-
beaglebone-black-device-tree.pdf.

Customizing the device tree
BeagleBoard.org's cape universal device tree is great for prototyping, but a tool such 
as config-pin is not suitable for production. When we ship a consumer device, we know
what peripherals are included. There should be no hardware discovery involved 
in the boot process aside from reading a model and revision number from an EEPROM. U-
Boot can then decide what device tree and overlays to load based on that. Like choosing
kernel modules, the contents of the device tree are decisions best made at compile time, not
runtime.
Eventually, we will need to customize the device tree source for our custom AM335x
board. Most SoC vendors, including Texas Instruments, provide interactive pin mux 
tools for generating device tree source. We will use Texas Instruments online SysConfig
tool to add a spidev interface to our Nova board. We already customized the device tree for
the Nova back in the Porting Linux to a new board section of Chapter 4, Configuring and
Building the Kernel, and again in Chapter 6, Selecting a Build System, when we learned
how to create a custom BSP for Buildroot. This time, we will add to the am335x-
boneblack.dts file instead of just copying it verbatim.
Visit https://dev.ti.com and create an account if you do not already have one. You will need
a myTI account to access the online SysConfig tool.
To create a myTI account, follow these steps:

1. Click the Login / Register button in the top-right corner of the landing page.
2. Fill out the New user form.

https://cdn-learn.adafruit.com/downloads/pdf/introduction-to-the-beaglebone-black-device-tree.pdf
https://dev.ti.com/


3. Click the Create account button.

To launch the SysConfig tool, follow these steps:
1. Click the Login / Register button in the top-right corner of the landing page.
2. Log in by entering your email address and password under Existing myTI user.
3. Click on the SysConfig Launch button under Cloud tools.

The Launch button will take you to the SysConfig start page at
https://dev.ti.com/sysconfig/#/start, which you can bookmark for quicker access. SysConfig
lets us save our working designs to the cloud so that we can revisit them later.
To generate a SPI0 pinmux configuration for the AM335x, follow these steps:

1. Select AM335x from the Device menu under Start a new Design.
2. Leave the default Part and Package menu selections of Default and ZCE for the

AM335x as-is.
3. Click the Start button.
4. Select SPI from the left sidebar.
5. Click the ADD button to add an SPI to your design:

https://dev.ti.com/sysconfig/#/start


Figure 12.7 – Adding an SPI peripheral

6. Rename MySP1 to SPI0 by typing that into the Name field.
7. Select SPI0 from the Use Peripheral menu:



Figure 12.8 – Selecting SPI0

8. Select Master SPI with 1 chip select from the Use Case menu:



Figure 12.9 – Master SPI with 1 chip select

9. Uncheck the CS1 checkbox to remove that item.
10. Click on devicetree.dtsi under Generated Files to view the device tree source.
11. Select Pull Up from the Pull Up/Down menu for Signals:



Figure 12.10 – Pull up signals

Notice what this did to the displayed device tree source. All instances of 
PIN_INPUT have been replaced with PIN_INPUT_PULLUP.

12. Uncheck the Rx checkboxes for D1, SCLK, and CS0 since those pins are outputs
from the AM335x master, not inputs:



Figure 12.11 – Unchecking the Rx boxes

The D0 pin corresponds to MISO (master in, slave out), so leave Rx checked
for that pin. The spi0_sclk, spi0_d1, and spi0_cs0 pins should now be
configured as PIN_OUTPUT_PULLUP in the device tree source. Recall that SPI
CS signals are usually active low, so a pullup is required to keep that line
from floating.

13. Click on the floppy icon for devicetree.dtsi to save the device tree source file to
your machine.

14. Click Save As from the File menu in the top-left corner to save your design.
15. Give your design file a descriptive name such as nova.syscfg and click SAVE.



16. The contents of the .dtsi file you saved to your machine should look like this:

&am33xx_pinmux {

      spi0_pins_default: spi0_pins_default {

           pinctrl-single,pins = <

                AM33XX_IOPAD(0x950, PIN_OUTPUT_PULLUP | MUX_MODE0) /*
(A18) spi0_sclk.spi0_sclk */

                AM33XX_IOPAD(0x954, PIN_INPUT_PULLUP | MUX_MODE0) /*
(B18) spi0_d0.spi0_d0 */

                AM33XX_IOPAD(0x958, PIN_OUTPUT_PULLUP | MUX_MODE0) /*
(B17) spi0_d1.spi0_d1 */

                AM33XX_IOPAD(0x95c, PIN_OUTPUT_PULLUP | MUX_MODE0) /*
(A17) spi0_cs0.spi0_cs0 */

           >;

      };

      […]

};

I omitted the optional sleep pin settings because we won't need them. If we compare the
hexadecimal pin addresses shown in the preceding code with the addresses of those same
SPI0 pins in am335x-bone-common-univ.dtsi, we'll see that they match exactly.
The SPI0 pins in am335x-bone-common-univ.dtsi were all configured as follows:

AM33XX_IOPAD(0x095x, PIN_OUTPUT_PULLUP | INPUT_EN | MUX_MODE0)

Use of the INPUT_EN bitmask suggests that all four SPI0 pins in the cape universal device
tree are configured as inputs, as well as outputs, when in fact only spi0_ds0 at 0x954 needs
to function as an input.
The INPUT_EN bitmask is one of many macros defined in the /opt/source/dtb-4.19-
ti/include/dt-bindings/pinctrl/am33xx.h header file, which can be found on the
Debian Buster IoT image:

#define PULL_DISABLE            (1 << 3)

#define INPUT_EN                (1 << 5)

[…]

#define PIN_OUTPUT              (PULL_DISABLE)

#define PIN_OUTPUT_PULLUP       (PULL_UP)

#define PIN_OUTPUT_PULLDOWN     0

#define PIN_INPUT               (INPUT_EN | PULL_DISABLE)

#define PIN_INPUT_PULLUP        (INPUT_EN | PULL_UP)

#define PIN_INPUT_PULLDOWN      (INPUT_EN)

More TI device tree source macros are defined in the /opt/source/dtb-4.19-ti

include/dt-bindings/pinctrl/omap.h header file:
#define OMAP_IOPAD_OFFSET(pa, offset)   (((pa) & 0xffff) - (offset))

[…]

#define AM33XX_IOPAD(pa, val)           OMAP_IOPAD_OFFSET((pa), 0x0800)
(val)



Now that we have properly muxed the SPI0 pins, copy and paste the generated device tree
source into our nova.dts file. Once this new spi0_pins_default pingroup has been
defined, we can associate that pingroup with the spi0 device node by overriding it, as
follows:

&spi0 {

     status = "okay";

     pinctrl-names = "default";

     pinctrl-0 = <&spi0_pins_default>;

     […]

}

The & symbol before the device node name means we are referring to, and thereby
modifying, an existing node in the device tree rather than defining a new one.
I have included the finished nova.dts file in this book's code archive, inside the 
MELP/Chapter12/buildroot/board/melp/nova directory.
To build a custom Linux image with this device tree for our Nova board, follow these steps:

1. Copy MELP/Chapter12/buildroot over your Buildroot installation:
$ cp -a MELP/Chapter12/buildroot/* buildroot

This will either add a nova_defconfig file and board/melp/nova directory
or replace the ones from MELP/Chapter06/buildroot.

2. cd to the directory where you installed Buildroot:
$ cd buildroot

3. Delete all the previous build artifacts:
$ make clean

4. Get ready to build an image for our Nova board:
$ make nova_defconfig

5. Build the image:
$ make

Once the build has finished, the image is written to a file named
output/images/sdcard.img. Use Etcher to write that image to a microSD card. See the
Targeting real hardware section of Introducing Buildroot in Chapter 6, Selecting a Build
System, to learn how to do this. When Etcher is done flashing, insert the microSD into your
BeagleBone Black. There is no SSH daemon included with the root filesystem, so you will
need to attach a serial cable to log in.
To log into the BeagleBone Black via a serial console, follow these steps:

1. Plug the USB to TTL 3.3V serial cable from your Linux host to the J1 header on the
BeagleBone Black. Make sure the black wire on the FTDI end of the cable connects to
pin 1 on J1. A serial port should appear on your Linux host as /dev/ttyUSB0.

2. Start a suitable terminal program, such as gtkterm, minicom, or picocom, and attach it
to the port at 115200 bits per second (bps) with no flow control. gtkterm is probably



the easiest to set up and use:
$ gtkterm -p /dev/ttyUSB0 -s 115200

3. Apply power to the BeagleBone Black via the 5V barrel connector. You should see U-
Boot output, kernel log output, and eventually a login prompt on the serial console.

4. Log in as root with no password.

Scroll up or enter dmesg to view the kernel messages during boot. Kernel messages like the
following confirm that the spidev0.0 interface was successfully probed via the binding we
defined in nova.dts:

[    1.368869] omap2_mcspi 48030000.spi: registered master spi0

[    1.369813] spi spi0.0: setup: speed 16000000, sample trailing edge,
clk normal

[    1.369876] spi spi0.0: setup mode 1, 8 bits/w, 16000000 Hz max --> 0

[    1.372589] omap2_mcspi 48030000.spi: registered child spi0.0

The spi-tools package was included with the root filesystem for testing purposes. The
package consists of the spi-config and spi-pipe command-line tools.
Here is the usage for spi-config:

# spi-config -h

usage: spi-config options...

  options:

    -d --device=<dev>  use the given spi-dev character device.

    -q --query         print the current configuration.

    -m --mode=[0-3]    use the selected spi mode:

             0: low idle level, sample on leading edge,

             1: low idle level, sample on trailing edge,

             2: high idle level, sample on leading edge,

             3: high idle level, sample on trailing edge.

    -l --lsb={0,1}     LSB first (1) or MSB first (0).

    -b --bits=[7...]   bits per word.

    -s --speed=<int>   set the speed in Hz.

    -r --spirdy={0,1}  consider SPI_RDY signal (1) or ignore it (0).

    -w --wait          block keeping the file descriptor open to avoid
speed reset.

    -h --help          this screen.

    -v --version       display the version number.

And here is the usage for spi-pipe:
# spi-pipe -h

usage: spi-pipe options...

  options:

    -d --device=<dev>    use the given spi-dev character device.

    -s --speed=<speed>   Maximum SPI clock rate (in Hz).

    -b --blocksize=<int> transfer block size in byte.

    -n --number=<int>    number of blocks to transfer (-1 = infinite).



    -h --help            this screen.

    -v --version         display the version number.

I won't utilize spi-tools in this chapter, relying instead on spidev-test and a modified
version of that same program that I call spidev-read.
We have now gone as far with the device tree source as we are going to go in this book.
While DTS is extremely versatile, it can also be very frustrating. The dtc compiler is not
very smart, so a lot of device tree source debugging happens at runtime using modprobe and
dmesg. Forgetting a pullup or misconfiguring an input as an output when pin muxing can be
enough to prevent a device from probing. Wi-Fi/Bluetooth modules with SDIO interfaces
are especially challenging to bring up.
With SPI out of the way, it is now time to get up close and personal with the GPS module.
We will return to the topic of the generic spidev interface when we have finished wiring up
the SparkFun ZOE-M8Q GPS Breakout.

Prototyping with breakout boards
Now that we have SPI working on the BeagleBone Black, let's turn our attention back 
to the GPS module. Before we can wire up the SparkFun ZOE-M8Q GPS Breakout, we
need to do some soldering. Soldering requires desk space, materials, and a considerable
time investment.
To perform the soldering for this project, you will need the following items:

A soldering iron (adjustable temperature) with a conical tip
Any one of the following: a silicone car dashboard anti-slip mat, a silicone baking mat,
or a ceramic tile
A fine (0.031-inch gauge) electrical rosin core solder
A soldering iron stand
A wet sponge
A wire cutter
Safety glasses
A Helping Hands tool, along with a magnifying glass and an LED light
An X-Acto #2 knife with a #2 blade or #1 knife with a #11 blade

These items are nice to have but not necessary:
An insulated silicone soldering mat
solder wick
A brass sponge
Sticky tack or some similar putty-like adhesive
Dental tools kit



Needle nose pliers
Tweezers

Most of these items come bundled together with the SparkFun Beginner Tool Kit, but they
can be purchased elsewhere at a lower cost. If you are new to soldering, I also recommend
obtaining some scrap PCBs to practice on before operating on the ZOE-M8Q. The holes on
the SparkFun GPS Breakout are small and require a steady, delicate touch. A Helping
Hands tool with a magnifying glass and alligator clips helps tremendously. Some sticky
tack can also hold a breakout board in place on a hard, flat surface while you apply solder.
When done, use an X-Acto knife to scrape off any excess sticky tack on or near the
contacts.
Even if you are new to electronics, I encourage you to take the plunge and learn to solder. It
might take a couple of days of frustration before you get the hang of it, but the satisfaction
you get from building your own circuits is well worth it. I recommend reading
MightyOhm's free Soldering is Easy comic book by Mitch Altman and Andie Nordgren to
get started.
Here are some of my own helpful soldering tips. Wiping your soldering tip with a brass
sponge keeps it free from troublesome oxidation. Use an X-Acto knife to scrape off any
stray blobs of solder from PCBs. Use a hot iron to melt and play with some solder on your
silicone mat to get accustomed to its properties. Lastly, always wear safety glasses when
handling hot solder so none gets in your eyes.

Closing the SPI jumper
We located the D_SEL pin on the SparkFun GPS Breakout schematic on the left-hand side
of a jumper named JP1. Tying the D_SEL pin to GND on the right-hand side of the jumper
switches the ZOE-M8Q from I2C to SPI mode. The two SPI jumper pads already have
some solder on them. We need to heat the pads so that we can move that solder around.
Flip the breakout board over to see the jumpers. Notice that the JP1 jumper is labeled SPI
on the center left of the board:



Figure 12.12 – Jumpers

To close the SPI jumper, do the following:
1. Plug in and heat your soldering iron to 600 °F.
2. Hold the GPS Breakout in place with the alligator clips from your Helping Hands.
3. Position your Helping Hands magnifying glass and LED light so that you can clearly

see the SPI jumper.
4. Place the soldering tip on the left and right pads of the SPI jumper until the solder

melts, forming a bridge between the two pads.
5. Feel free to add some more solder if necessary.
6. Use the tip of your soldering iron to melt and lift off any excess solder from the

jumper pads.

Very little solder is needed to close the jumper. If the solder starts to smoke, turn down the
temperature of your iron. Once the SPI jumper is closed, serial and I2C communications are
disabled on the ZOE-M8Q. The FTDI and I2C pin labels on the top side of the breakout
board no longer apply. Use the SPI pin labels on the underside of the board.

TIP
Use the side of the tip (also known as "the sweet spot"), not the very tip of the iron, for best
results.
We don't need to repeat this same soldering procedure for the JP2 because the pads 
are already bridged on that jumper. JP2 has a separate pad for each of the two 2.2kΩ 
I2C pull up resistors. Notice that the JP2 is directly above JP1 and labeled I2C on the
breakout board.



Now that the SPI jumper is closed, let's attach the GNSS antenna.

Attaching the GNSS antenna
A ceramic or Molex adhesive GNSS antenna helps the ZOE-M8Q obtain a GPS fix. U.FL
connectors are fragile and should be handled with care. Lay the breakout board flat on a
hard surface and use a magnifying glass to ensure proper placement of the antenna.
To attach the GNSS antenna to the U.FL connector, follow these steps:

1. Align the cable so that the female connector and the end rests evenly across the surface
of the male connector on the board.

2. Place your finger lightly on top of the stacked connectors to make sure the female
connector is not teetering.

3. Examine the two stacked connectors from above to make sure they are centered on top
of one another.

4. Use the center of your finger to press down firmly on the center of the connector, until
you feel the two connectors lock together in place.

Now that the antenna is attached, we are ready to attach the SPI header.

Attaching the SPI header
We will use six male to female jumper wires to connect the SparkFun GPS Breakout to 
the BeagleBoard Black. The male ends of the jumper wires plug into the P9 expansion
header on the BeagleBone Black. The female ends plug into a row of straight breakaway
headers that we will solder onto the breakout board. Through-hole soldering with the header
pins in place can be difficult, because the pins leave little room in the holes for the solder
and tip to slide in. That is why I recommend fine gauge (0.031 inches or smaller) solder for
this project.
If you are inexperienced with handling small electronic components, you should first
practice soldering some straight breakaway headers onto a scrap PCB. A little extra
preparation could save you from damaging and having to replace your expensive ZOE-
M8Q GPS module. A proper solder joint should flow around the header pin and fill the
hole, forming a volcano-shaped mound. The solder joint needs to touch the metal ring
around the hole. Any gaps between the pin and the metal ring will likely result in a bad
connection.
To ready the SparkFun GPS Breakout so that you can attach the SPI header, follow 
these steps:

1. Break off a row of eight header pins.
2. Break off a row of four header pins.



3. Insert the row of eight through the SPI holes on the underside of the breakout board.
4. Insert the row of four through the holes opposite the SPI row on the underside 

of the breakout board. This header only serves to keep the board stable while 
you're soldering.

5. Hold the GPS Breakout in place with the alligator clips from your Helping Hands.
6. Position your Helping Hands magnifying glass and LED light so that you can clearly

see the row of eight FTDI and I2C holes on the top side of the breakout board.
7. Plug in and heat your soldering iron to 600 to 650 °F for lead-based solder or 650 to

700 °F for lead-free solder.

Perform the following steps for the six holes on the top side of the breakout board labeled
SDA, SCL, GND, 3V3, RXI, and TXO:

1. Apply a very small ball of solder to the tip of the hot iron to help prep the joint.
2. Heat the header pin and the edge of the metal ring around the hole by touching them

with the tip of the iron.
3. With the tip of the iron still in place, feed solder into the joint until the hole is filled.
4. Pull the melted solder up slowly with the tip of the iron to form a mound.
5. Scrape any stray blobs of solder off with an X-Acto knife and use solder wick to

remove any accidental solder bridges between holes.
6. Clean off any black oxidation that forms on the tip of the iron with either a wet or

brass sponge.

Repeat these steps until all six pins have been soldered into their holes. When finished, the
top side of the breakout board should look like this:



Figure 12.13 – Solder joints

Note that the jumper wires have already been attached in this photo, even though we
haven't gotten to them yet. The two holes labeled NC in the row of eight do not require
soldering because they are not connected to anything.

Connecting the SPI jumper wires
Flip the breakout board so that the underside is visible again. By doing this, we can attach
the jumper wires. Use a black or gray wire for GND and a red or orange wire for 3V3 to
avoid mixing them up and damaging your breakout board. It also helps to use different
colors for the other wires so that we don't get the SPI lines confused.
Here are what the female ends of my six jumper wires look like when inserted into the
header pins on the underside of the breakout board:



Figure 12.14 – Female ends of the SPI jumper wires

To connect the male ends of the SPI jumper wires to the P9 expansion header on the
BeagleBone Black, follow these steps:

1. Disconnect the power from the BeagleBone Black.
2. Connect the GND wire from the GPS to pin 1 on P9.
3. Connect the CS wire from the GPS to pin 17 on P9.
4. Connect the CLK wire from the GPS to pin 22 on P9.
5. Connect the 3V3 wire from the GPS to pin 3 on P9.
6. Connect the MOSI wire from the GPS to pin 18 on P9.
7. Connect the MISO wire from the GPS to pin 21 on P9.

As a rule, it is best to connect the GND wire first before any of the other wires. This
protects the BeagleBone's I/O lines from any electrostatic discharge that may have built up



on the GPS Breakout.
The male ends of the six jumper wires should look like this when connected:

Figure 12.15 – Male ends of the SPI jumper wires



The gray wire connected to pin 1 is GND and the yellow wire connected to pin 3 is 3V3 in
my case. The blue wire connected to pin 18 is MOSI on my GPS Breakout. Be careful not
to plug the 3V3 wire into either of the VDD_5V pins that are just below the VDD_3V3 pins
on P9, as you could destroy your breakout board.
To enable the SPI0 bus on the BeagleBone Black and power up the GPS Breakout, follow
these steps:

1. Insert the Debian Buster IoT microSD card into your BeagleBone Black.
2. Apply power the BeagleBone Black by connecting the 5V power supply.
3. Connect your BeagleBone Black to the internet by plugging the board into a port on

your router with an Ethernet cable.
4. SSH into your BeagleBone Black as debian:

$ ssh debian@beaglebone.local

5. The password is temppwd.
6. Navigate to the directory for this chapter, which can be found in this book's archive:

$ cd MELP/Chapter12

7. Enable the /dev/spidev0.0 interface:
$ sudo ./config-spi0.sh

Navigate to the spidev-test source directory and run the spidev_test program back-to-
back a few times:

debian@beaglebone:~$ cd MELP/Chapter12/spidev-test

$ ./spidev_test

$ ./spidev_test

Pressing the up arrow key saves us from having to retype the previous command. On the
second attempt, you should see an NMEA string starting with $GNRMC in the RX buffer:

$ ./spidev_test

spi mode: 0x0

bits per word: 8

max speed: 500000 Hz (500 KHz)

RX | 24 47 4E 52 4D 43 2C 2C 56 2C 2C 2C 2C 2C 2C 2C 2C 2C 2C 4E 2A 34
44 0D 0A 24 47 4E 56 54 47 2C  | $GNRMC,,V,,,,,,,,,,N*4D..$GNVTG,

If you see an NMEA sentence in your RX buffer like the one shown here, then everything
has gone according to plan. Congratulations! The hardest parts of this project are now over.
The rest is "just software", as we like to say in the industry.
If no NMEA sentences (https://en.wikipedia.org/wiki/NMEA_0183) are being received by
spidev_test from the GPS module, here are some questions we should ask ourselves:

1. Is the cape universal device tree loaded?
Run the version.sh script under /opt/scripts/tools with sudo to 
verify this.

2. Did we run the config-spi0 script without errors?

https://en.wikipedia.org/wiki/NMEA_0183


Rerun config-spi0 with sudo if you encounter permissions errors. Any
subsequent No such file or directory errors imply that U-Boot failed 
to load the cape universal tree.

3. Is the power LED on the breakout board lighting up red?
If not, then 3V3 is not connected, so the GPS Breakout is not powering on. If
you have a multimeter, then you can use that to determine whether the GPS
Breakout is indeed receiving 3.3 V from the BeagleBone Black.

4. Is the GND jumper wire from the GPS Breakout connected to pin 1 or 2 on P9?
The GPS Breakout will not operate with proper grounding.

5. Are there any loose jumper wires on either end?
All four of the remaining wires (CS, SCLK, MISO, and MOSI) are essential
for a working SPI interface.

6. Are the MOSI and MISO jumper wires swapped on either end?
Like swapping the TX and RX lines on a UART, this mistake is notoriously
easy to make. Color coding our jumper wires helps but labeling them with
their names using tape is even better.

7. Are the CS and SCLK jumper wires swapped on either end?
Choosing distinct colors for our jumper wires helps us avoid mistakes like
these.

If the answers to all these questions check out, then we are now ready to attach the logic
analyzer. If you do not have a logic analyzer, then I suggest you reinspect the JP1 jumper
and all six solder joints. Make sure the JP1 jumper pads are properly joined. Fill in any gaps
between header pins and their surrounding metal rings. Remove any excess solder that
could be shorting two adjacent pins together. Add some solder to joints where it may be
lacking. Once you are satisfied with this rework, reconnect the jumper wires and reattempt
this exercise. With some luck, the results will be better or different this time.
Successful completion of this exercise concludes all the soldering and wiring required for
this project. If you are anxious to see the finished product in action, you can skip the next
section and jump straight to the Receiving NMEA messages over SPI section. Once you
have NMEA data streaming from the GPS module to a terminal window, we can pick up
where we left off here and continue learning about SPI signals and digital logic.

Probing SPI signals with a logic analyzer
Even if you succeeded in receiving NMEA from your GPS module, you should attach a
logic analyzer such as the Saleae Logic 8 if you have one. Probing the SPI signals helps us
understand how the SPI protocol works and acts as a powerful debugging aid when things
go wrong. In this section, we will use a Saleae Logic 8 to sample the SPI signals between



the BeagleBone Black and ZOE-M8Q. If something is noticeably off with any of the four
SPI signals, then a logic analyzer should make that mistake readily apparent.
The Saleae Logic 8 requires a laptop or desktop computer with a USB 2.0 port. The Saleae
Logic 1 software is available for Linux, Mac OS X, and Windows. There is an
installdriver.sh script that comes with the Linux version of Logic that grants the
software permission to access the device. Find that script in the Logic installation's Drivers
directory and run it from the command line so that you do not need to launch Logic with
sudo every time. Create a shortcut to the Logic executable in the installation folder and
place it on your desktop or launch bar for quicker access.
Once the Logic 1 software has been installed on your system, connect to the device with the
high-speed USB cable that came with it. Launch the Logic application and wait a moment
for the software to connect to and configure the device. When the Logic window says it is
Connected at the top, then we are ready to start wiring up our test bench. Press down on the
wide end of each test clip with your thumb to extend the grabbers and let go to clasp the
pin. Use magnification to read the labels next to the through-holes and ensure the test clips
are firmly wrapped around their respective pins.
To assemble a SPI test bench with the Saleae Logic 8, follow these steps:

1. Connect the nine-pin cable harness to the logic analyzer. Align the cable harness so
that the gray lead points at the ground symbol and the black lead points at the 1 are on
the underside of the logic analyzer, as shown here:



Figure 12.16 – Saleae Logic 8

2. Attach test clips to the ends of the gray, orange, red, brown, and black leads. Each test
clip has two metal pins that can be inserted into the connector at the end of a lead.
Only connect one of these pins to a lead. The black, brown, red, and orange leads
correspond to the first four channels in the logic analyzer. The gray lead always
connects to GND.

3. Disconnect your BeagleBone Black from the 5V power supply so that it is off.



4. Pull the female ends of all the jumper wires except for 3V3 from the header pins we
soldered onto the GPS Breakout.

5. Grab the CS pin on the GPS Breakout with the clip on the orange lead.
6. Grab the SCLK pin on the GPS Breakout with the clip on the red lead.
7. Grab the GND pin on the GPS Breakout with the clip on the gray lead.
8. Skip the NC and 3V3 pins because we are not probing those.
9. Grab the MOSI pin on the GPS Breakout with the clip on the black lead.

10. Grab the MISO pin on the GPS Breakout with the clip on the brown lead.
11. Reconnect the female ends of the jumper wires to the header pins we soldered onto the

GPS Breakout. If the jumper wires are already connected, then just slide the female
ends up the header pins a bit and attach the test clips. Push the female ends down onto
the pins so that they do not slip off easily. The finished assembly should look
something like this:



Figure 12.17 – Test clips attached for probing

The yellow jumper wire is 3V3 in my case, so no test clip is attached to it.
The blue jumper wire is MOSI, which is probed by the black lead from the
logic analyzer.



12. Reconnect your BeagleBone Black to the 5V power supply. The GPS Breakout should
power up and the onboard power LED should light up red.

To configure the Logic 8 so that it samples on four SPI channels, follow these steps:
1. Launch the Logic application and wait for it to connect to the logic analyzer over the

USB port.
2. Click on the + sign in the Analyzers pane to add an analyzer:

Figure 12.18 – Add Analyzer

3. Select SPI from the Add Analyzer pop-up menu.
4. Click the Save button in the Analyzer Settings dialog:



Figure 12.19 – Analyzer Settings

CPOL and CPHA stand for clock polarity and clock phase. A CPOL of 0 means
the clock is low when inactive, while a CPOL of 1 means the clock is high
when inactive. A CPHA of 0 means data is valid on a clock leading edge,
while a CPHA 
of 1 means data is valid on a clock trailing edge. Four different SPI modes
are available: mode 0 (CPOL = 0, CPHA = 0), mode 1 (CPOL = 0, CPHA =
1), mode 2 (CPOL = 1, CPHA = 1), and mode 3 (CPOL = 1, CPHA = 0).
The ZOE-M8Q defaults to SPI mode 0.

5. Click on the cog button next to Channel 4 on the left sidebar to bring up the Channel
Settings pop-up menu:

Figure 12.20 – Hide This Channel

6. Select Hide This Channel from the Channel Settings menu.
7. Repeat steps 5 and 6 for Channels 5, 6, and 7 so that only Channels 0 to 3 are visible.
8. Click on the cog button next to Channel 0 (MOSI) on the left sidebar to bring up the

Channel Settings pop-up menu.
9. Select 4x from the Channel Settings menu:



Figure 12.21 – Enlarging the channel

10. Repeat steps 8 and 9 for Channels 1 to 3 (MISO, CLOCK, and ENABLE) to make
those signal graphs larger.

11. Click on the button to the right of the cog button for Channel 3 (ENABLE) on the left
sidebar to bring up the Trigger Settings pop-up menu. ENABLE corresponds to SPI
CS, so we want sampling to start upon receipt of an event from that channel.

12. Select the falling edge symbol as the trigger from the Trigger Settings menu:

Figure 12.22 – Selecting the falling edge trigger

13. Click on the up/down arrow symbol on the Start button in the top-left corner to set
the speed and duration of the sampling.

14. Lower the speed to 2 MS/s and set the duration to 50 Milliseconds:



Figure 12.23 – Lowering the speed and duration

As a rule of thumb, the sample rate should be at least as four times as fast as the bandwidth.
By this measure, a 1 MHz SPI port requires a minimum sample rate of 4 MS/s. Since
spidev_test sets the speed of the SPI port to 500 kHz, then a sample rate of 2 MS/s should
be just enough to keep up. Undersampling results in an irregular CLOCK signal. The SPI
ports on the BeagleBone Black can operate as fast as 16 MHz. In fact, 16 MHz is the speed
spi0.0 defaults to in our custom nova.dts, as shown by dmesg.
To capture an SPI transmission from the BeagleBone Black, hit the Start button in the top-
left corner. If the CS signal is behaving correctly, your capture should not start until you run
the spidev_test program.
Upon executing spidev_test from the debian@bealglebone terminal, sampling should
trigger and a graph similar to the following should appear in the Logic window:



Figure 12.24 – spidev_test transmission

Use the scroll wheel on your mouse to zoom in and out of any interesting segments of the
signal graphs. Notice that the ENABLE graph on Channel 3 drops low whenever data is
sent by the BeagleBone Black on Channel 0 (MOSI). The CS signal for SPI is normally
active low, so the ENABLE graph jumps high when no data is being transferred. If the
ENABLE graph stays high, then no more data is sent to the GPS module because that
peripheral never gets enabled on the SPI bus.
Here is a closeup of an interesting segment of the MOSI graph on Channel 0:



Figure 12.25 – MOSI segment

Notice that the recorded 0x40 0x00 0x00 0x00 0x00 0x95 byte sequence matches the
contents of the default TX buffer for spidev_test. If you see this same byte sequence on
Channel 1 instead, then the MOSI and MISO wires could be swapped somewhere in 
your circuit.
Here is the tail end of the SPI transfer:



Figure 12.26 – End of spidev_test transmission

Notice that the last two bytes on Channel 0 (MOSI) of this segment are 0xF0 and 0x0D, just
like in the default TX buffer. Also, notice that the CLOCK signal on Channel 2 oscillates
for a regular number of cycles whenever a byte is transferred. If the CLOCK signal looks
irregular, then either the data being sent is getting dropped or garbled or your sample rate
isn't fast enough. The signal graph for Channel 1 (MISO) remains high throughout this
session since no NMEA message is received from the GPS module on the first SPI transfer.
If the signal on Channel 3 (ENABLE) settles on the logic 0 state, this suggests that the pin
being probed was muxed without the PULL_UP bit being set. The PULL_UP bit acts like a pull
up resistor holding the line high when the CS signal is inactive, hence the term "active
low". If you see what looks like a CLOCK signal on a channel other than 2, then either we



probed the wrong pin or swapped SCLK with another wire somewhere. If the signal graphs
match the images in the last three figures, then we have succeeded in verifying that SPI is
operating as intended.
We now have another powerful tool in our embedded arsenal. Besides SPI, the Logic 8 can
also be used to probe and analyze I2C signals. We will use it again in the next section to
examine NMEA messages that are received from the GPS module.

Receiving NMEA messages over SPI
NMEA is a data message format supported by most GPS receivers. The ZOE-M8Q outputs
NMEA sentences by default. These sentences are ASCII text, starting with the $ character,
followed by comma-separated fields. Raw NMEA messages are not always easy to read, so
we will use a parser to add helpful annotations to the data fields.
What we want to do is read the stream of NMEA sentences from the ZOE-M8Q out of the
/dev/spidev0.0 interface. Since SPI is full-duplex, this also means writing to
/dev/spidev0.0, although we can simply write the same 0xFF value over and over again.
There is a program called spi-pipe that is designed to do this sort of thing. It is part of the
spi-tools package, along with spi-config. Rather than relying on spi-pipe, I chose to
modify spidev-test so that it streams the ASCII input from the GPS module to stdout. The
source for my spidev-read program can be found in this book's code archive, inside the
MELP/Chapter12/spidev-read directory.
To compile the spidev_read program, use the following commands:

debian@beaglebone:~$ cd MELP/Chapter12/spidev-read

$ gcc spidev_read.c -o spidev_read

Now, run the spidev_read program:
$ ./spidev_read

spi mode: 0x0

bits per word: 8

max speed: 500000 Hz (500 KHz)

$GNRMC,,V,,,,,,,,,,N*4D

$GNVTG,,,,,,,,,N*2E

$GNGGA,,,,,,0,00,99.99,,,,,,*56

$GNGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*2E

$GNGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*2E

$GPGSV,1,1,00*79

$GLGSV,1,1,00*65

$GNGLL,,,,,,V,N*7A

[…]

^C

You should see a spurt of NMEA sentences once every second. Hit Ctrl + C to cancel the
stream and return to the command-line prompt.



Let's capture these SPI transfers with the Logic 8:
1. Click on the up/down arrow symbol on the Start button in the top-left corner to

change the duration of the sampling.
2. Set the new duration to 3 seconds.
3. Click the Start button in the top-left corner.
4. Run the spidev_read program again.

The Logic software should stop capturing after 3 seconds and a graph similar to the
following should appear in the Logic window:

Figure 12.27 – spidev_read transmissions

We can clearly see the three spurts of the NMEA sentences on Channel 1 (MISO) precisely
1 second apart from each other.
Zoom in to get a closer look at one of these NMEA sentences:



Figure 12.28 – NMEA sentence segment

Notice that the data on MISO channel now coincides with drops in the ENABLE signal and
oscillations on the CLOCK signal. The spidev_read program only writes 0xFF bytes out to
MOSI, so there is no activity on Channel 0.
I have included a NMEA parser script written in Python, along with the spidev_read
source code. That parse_nmea.py script depends on the pynmea2 library.
To install pynmea2 on the BeagleBone Black, use the following command:

$ pip3 install pynmea2

Looking in indexes: https://pypi.org/simple,
https://www.piwheels.org/simple

Collecting pynmea2



  Downloading
https://files.pythonhosted.org/packages/88/5f/a3d09471582e710b4871e41b0b
7792be836d6396a2630dee4c6ef44830e5/pynmea2-1.15.0-py3-none-any.whl

Installing collected packages: pynmea2

Successfully installed pynmea2-1.15.0

To pipe the output of spidev_read into the NMEA parser, use the following command:
$ cd MELP/Chapter12/spidev-read

$ ./spidev_read | ./parse_nmea.py

The parsed NMEA output looks as follows:
<RMC(timestamp=None, status='V', lat='', lat_dir='', lon='', lon_dir='',
spd_over_grnd=None, true_course=None, datestamp=None, mag_variation='',
mag_var_dir='') data=['N']>

<VTG(true_track=None, true_track_sym='', mag_track=None,
mag_track_sym='', spd_over_grnd_kts=None, spd_over_grnd_kts_sym='',
spd_over_grnd_kmph=None, spd_over_grnd_kmph_sym='', faa_mode='N')>

<GGA(timestamp=None, lat='', lat_dir='', lon='', lon_dir='', gps_qual=0,
num_sats='00', horizontal_dil='99.99', altitude=None, altitude_units='',
geo_sep='', geo_sep_units='', age_gps_data='', ref_station_id='')>

<GSA(mode='A', mode_fix_type='1', sv_id01='', sv_id02='', sv_id03='',
sv_id04='', sv_id05='', sv_id06='', sv_id07='', sv_id08='', sv_id09='',
sv_id10='', sv_id11='', sv_id12='', pdop='99.99', hdop='99.99',
vdop='99.99')>

<GSA(mode='A', mode_fix_type='1', sv_id01='', sv_id02='', sv_id03='',
sv_id04='', sv_id05='', sv_id06='', sv_id07='', sv_id08='', sv_id09='',
sv_id10='', sv_id11='', sv_id12='', pdop='99.99', hdop='99.99',
vdop='99.99')>

<GSV(num_messages='1', msg_num='1', num_sv_in_view='00')>

<GSV(num_messages='1', msg_num='1', num_sv_in_view='00')>

<GLL(lat='', lat_dir='', lon='', lon_dir='', timestamp=None, status='V',
faa_mode='N')>

[…]

My GPS module was unable to see any satellites or acquire a fixed position. This could be
due to any number of reasons, such as choosing the wrong GPS antenna or no clear line-of-
sight to the sky. If you are experiencing similar failures, that is okay. RF is complicated and
the goal of this chapter was only to prove we could get SPI communications with the GPS
module working. Now that we've done that, we can begin to experiment with alternate GPS
antennas and more of the ZOE-M8Q's advanced features, such as its support for the much
richer UBX message protocol.
With NMEA data now streaming out to the terminal, our project is finished. We succeeded
in verifying that the BeagleBone Black can communicate with the ZOE-M8Q over SPI. If
you skipped over the Probing SPI signals with a logic analyzer section, now is a good time
to resume with that exercise. Like I2C, SPI is supported by most SoCs, so it is worth
getting familiar with, especially if your application requires high-speed peripherals.

Summary



In this chapter, we learned how to integrate a peripheral with a popular SoC. To do that, we
had to mux pins and modify the device tree source using knowledge gleaned from data
sheets and schematics. Without finished hardware in hand, we had to rely on a breakout
board and do some soldering so that the part could be wired together with a dev board.
Lastly, we learned how to use a logic analyzer to verify and troubleshoot electrical signals.
Now that we have working hardware, we can begin to develop our embedded application.
The next two chapters are all about system startup and the different options you have for the
init program, from the simple BusyBox init to more complex systems such as System V
init, systemd, and BusyBox's runit. Your choice of init program can have a big impact
on the user experience of your product, both in terms of boot times and fault tolerance.

Further reading
The following resources provide more information about the topics that were introduced in
this chapter:

Introduction to SPI Interface, by Piyu Dhaker: https://www.analog.com/en/analog-
dialogue/articles/introduction-to-spi-interface.html
Soldering is Easy, by Mitch Altman, Andie Nordgren, and Jeff Keyzer:
https://mightyohm.com/blog/2011/04/soldering-is-easy-comic-book
SparkFun GPS Breakout (ZOE-M8Q and SAM-M8Q) Hookup Guide, by Elias the
Sparkiest: https://learn.sparkfun.com/tutorials/sparkfun-gps-breakout-zoe-m8q-and-
sam-m8q-hookup-guide

https://www.analog.com/en/analog-dialogue/articles/introduction-to-spi-interface.html
https://mightyohm.com/blog/2011/04/soldering-is-easy-comic-book
https://learn.sparkfun.com/tutorials/sparkfun-gps-breakout-zoe-m8q-and-sam-m8q-hookup-guide


Chapter 13: Starting Up – The init Program
We looked at how the kernel boots up to the point where it launches the first program, init,
in Chapter 4, Configuring and Building the Kernel. In Chapter 5, Building a Root
Filesystem, and Chapter 6, Selecting a Build System, we looked at creating root filesystems
of varying complexity, all of which contained an init program. Now, it is time to look 
at the init program in more detail and discover why it is so important to the rest of 
the system.
There are many possible implementations of init. I will describe the three main ones in
this chapter: BusyBox init, System V init, and systemd. For each one, I will give an
overview of how it works and the types of systems it suits best. Part of this is balancing the
trade-off between size, complexity, and flexibility. We will learn how to launch a daemon
using both BusyBox init and System V init. We will also learn how to add a service to
systemd that does the same.
In this chapter, we will cover the following topics:

After the kernel has booted
Introducing the init programs
BusyBox init
System V init
systemd

Technical requirements
To follow along with the examples, make sure you have the following:

A Linux-based host system
Buildroot 2020.02.9 LTS release
Yocto 3.1 (Dunfell) LTS release

You should have already installed the 2020.02.9 LTS release of Buildroot for Chapter 6,
Selecting a Build System. If you have not, then refer to the System requirements section of
The Buildroot user manual (https://buildroot.org/downloads/manual/manual.html) before
installing Buildroot on your Linux host according to the instructions from Chapter 6.
You should have already built the 3.1 (Dunfell) LTS release of Yocto for Chapter 6,
Selecting a Build System. If you have not, then refer to the Compatible Linux Distribution
and Build Host Packages sections of the Yocto Project Quick Build guide
(https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html)
before building Yocto on your Linux host according to the instructions from Chapter 6.

https://buildroot.org/downloads/manual/manual.html
https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html


All of the code for this chapter can be found in the Chapter13 folder from the book's
GitHub repository: https://github.com/PacktPublishing/Mastering-Embedded-Linux-
Programming-Third-Edition.

After the kernel has booted
We saw in Chapter 4, Configuring and Building the Kernel, how the kernel bootstrap code
seeks to find a root filesystem, either initramfs or a filesystem specified by root= on the
kernel command line, and then executes a program that, by default, is /init for initramfs
and /sbin/init for a regular filesystem. The init program has root privilege, and since it
is the first process to run, it has a process ID (PID) of 1. If, for some reason, init cannot
be started, the kernel will panic.
The init program is the ancestor of all other processes, as shown here by the pstree
command running on a simple embedded Linux system:

# pstree -gn

init(1)-+-syslogd(63)

        |-klogd(66)

        |-dropbear(99)

        `-sh(100)---pstree(109)

The job of the init program is to take control of the boot process in user space and set it
running. It may be as simple as a shell command running a shell script—there is an
example of this at the start of Chapter 5, Building a Root Filesystem—but in the majority of
cases, you will be using a dedicated init daemon to perform the following tasks:

During boot, after the kernel transfers control, the init program starts other daemon
programs and configures system parameters and other things needed to get the system
into a working state.
Optionally, it launches a login daemon, such as getty, on terminals that allow 
a login shell.
It adopts processes that become orphaned as a result of their immediate parent
terminating and there being no other processes in the thread group.
It responds to any of the init's immediate children terminating by catching the
SIGCHLD signal and collecting the return value to prevent them from becoming zombie
processes. I will talk more about zombies in Chapter 17, Learning About Processes
and Threads.
Optionally, it restarts those daemons that have terminated.
It handles the system shutdown.

In other words, init manages the life cycle of the system from bootup to shutdown. There
is a school of thought that says init is well placed to handle other runtime 
events, such as new hardware and the loading and unloading of modules. This is what
systemd does.

https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


Introducing the init programs
The three init programs that you are most likely to encounter in embedded devices are
BusyBox init, System V init, and systemd. Buildroot has options to build all three with
BusyBox init as the default. The Yocto Project allows you to easily choose between
System V init and systemd with System V init as the default. While Yocto's Poky-tiny
distribution ships with BusyBox init, most other distribution layers do not.
The following table gives some metrics to compare the three:

(*) BusyBox init is part of BusyBox's single executable, which is optimized for size 
on disk.
(**) Based on the Buildroot configuration of systemd.
Broadly speaking, there is an increase in flexibility and complexity as you go from
BusyBox init to systemd.

BusyBox init
BusyBox has a minimal init program that uses a configuration file, /etc/inittab, 
to define rules to start programs at bootup and to stop them at shutdown. Usually, 



the actual work is done by shell scripts, which, by convention, are placed in the 
/etc/init.d directory.
init begins by reading /etc/inittab. This contains a list of programs to run, one per line,
with this format:

<id>::<action>:<program>

The role of these parameters is as follows:
id: This is the controlling terminal for the command.
action: This includes the conditions to run this command, as shown in the following
list.
program: This is the program to run.

The actions are as follows:
sysinit: Runs the program when init starts before any of the other types 
of actions.
respawn: Runs the program and restarts it if it terminates. It is typically used to run a
program as a daemon.
askfirst: This is the same as respawn, but it prints the message Please press Enter
to activate this console to the console, and it runs the program after Enter has
been pressed. It is used to start an interactive shell on 
a terminal without prompting for a username or password.
once: Runs the program once but does not attempt to restart it if it terminates.
wait: Runs the program and waits for it to complete.
restart: Runs the program when init receives the SIGHUP signal, indicating that it
should reload the inittab file.
ctrlaltdel: Runs the program when init receives the SIGINT signal, usually as a
result of pressing Ctrl + Alt + Del on the console.
shutdown: Runs the program when init shuts down.

Here is a small example that mounts proc and sysfs and runs a shell on a 
serial interface:

null::sysinit:/bin/mount -t proc proc /proc

null::sysinit:/bin/mount -t sysfs sysfs /sys

console::askfirst:-/bin/sh

For simple projects in which you want to launch a small number of daemons, and perhaps
start a login shell on a serial terminal, it is easy to write the scripts manually. This would be
appropriate if you are creating a roll your own (RYO) embedded Linux. However, you will
find that handwritten init scripts rapidly become unmaintainable as the number of things
to be configured increases. They are not very modular and so need updating each time a
new component is added or removed.



Buildroot init scripts
Buildroot has been making effective use of BusyBox init for many years. Buildroot has
two scripts in /etc/init.d/ named rcS and rcK. The first one runs at bootup and iterates
over all the scripts in /etc/init.d/ with names that begin with a capital S followed by two
digits, and runs them in numerical order. These are the start scripts. The rcK script is run at
shutdown and iterates over all the scripts beginning with a capital K followed by two digits
and runs them in numerical order. These are the kill scripts.
With this in place, it becomes easy for Buildroot packages to supply their own start and kill
scripts, using the two-digit number to impose the order in which they should be run, and so
the system becomes extensible. If you are using Buildroot, this is transparent. If not, you
could use it as a model for writing your own BusyBox init scripts.
Like BusyBox init, System V init relies on shell scripts inside /etc/init.d and an
/etc/inittab configuration file. While the two init systems are similar in many ways,
System V init has more features and a much longer history.

System V init
This init program was inspired by the one from Unix System V and so dates back to the
mid-1980s. The version most often found in Linux distributions was written initially by
Miquel van Smoorenburg. Until recently, it was the init daemon for almost all desktop and
server distributions and a fair number of embedded systems as well. However, in recent
years, it has been replaced by systemd, which I will describe in the next section.
The BusyBox init daemon I have just described is just a trimmed-down version of System
V init. Compared to BusyBox init, System V init has two advantages:

Firstly, the boot scripts are written in a well-known, modular format, making it easy to
add new packages at build time or runtime.
Secondly, it has the concept of runlevels, which allow a collection of programs to be
started or stopped in one go when switching from one runlevel to another.

There are eight runlevels, numbered from 0 to 6, plus S:
S: Runs startup tasks
0: Halts the system
1 to 5: Available for general use
6: Reboots the system

Levels 1 to 5 can be used as you please. On desktop Linux distributions, they are
conventionally assigned as follows:

1: Single user
2: Multi-user without network configuration



3: Multi-user with network configuration
4: Not used
5: Multi-user with graphical login

The init program starts the default runlevel given by the initdefault line in
/etc/inittab as follows:

id:3:initdefault:

You can change the runlevel at runtime using the telinit [runlevel] command, which
sends a message to init. You can find the current runlevel and the previous one using the
runlevel command. Here is an example:

# runlevel

N 5

# telinit 3

INIT: Switching to runlevel: 3

# runlevel

5 3

Initially, the output from the runlevel command is N 5, indicating that there is no previous
runlevel, because the runlevel has not changed since booting and the current runlevel is 5.
After changing the runlevel, the output is 5 3, showing that there has been 
a transition from 5 to 3.
The halt and reboot commands switch to runlevels 0 and 6, respectively. You can override
the default runlevel by giving a different one on the kernel command line as 
a single digit from 0 to 6. For example, to force the runlevel to be single user, you would
append 1 to the kernel command line, and it would look something like this:

console=ttyAMA0 root=/dev/mmcblk1p2 1

Each runlevel has a number of scripts that stop things, called kill scripts, and another group
that starts things, the start scripts. When entering a new runlevel, init first runs the kill
scripts in the new level, and then the start scripts in the new level. Daemons that are
currently running and that have neither a start script nor a kill script in the new runlevel are
sent a SIGTERM signal. In other words, the default action on the switching runlevel is to
terminate daemons unless told to do otherwise.
In truth, runlevels are not used that much in embedded Linux: most devices simply boot to
the default runlevel and stay there. I have a feeling that it is partly because most people are
not aware of them.

TIP
Runlevels are a simple and convenient way to switch between modes, for example, from
production to maintenance mode.
System V init is an option in Buildroot and the Yocto Project. In both cases, the init
scripts have been stripped of any bash shell specifics, so they will work with the BusyBox
ash shell. However, Buildroot cheats somewhat by replacing the BusyBox init program
with System V init and adding an inittab that mimics the behavior of BusyBox.



Buildroot does not implement runlevels, except that switching to levels 0 or 6 halts or
reboots the system.
Next, let's look at some of the details. The following examples are taken from the Yocto
Project 3.1 release. Other distributions may implement the init scripts a little differently.

inittab
The init program begins by reading /etc/inttab, which contains entries that define what
happens at each runlevel. The format is an extended version of the BusyBox inittab that I
described in the preceding section, which is not surprising because BusyBox borrowed it
from System V in the first place.
The format of each line in inittab is as follows:

id:runlevels:action:process

The fields are shown here:
id: A unique identifier of up to four characters.
runlevels: The runlevels for which this entry should be executed. This was left blank
in the BusyBox inittab.
action: One of the keywords given in the following paragraph.
process: The command to run.

The actions are the same as for BusyBox init: sysinit, respawn, once, wait, restart,
ctrlaltdel, and shutdown. However, System V init does not have askfirst, which is
specific to BusyBox.
As an example, this is the complete inittab supplied by the Yocto Project target core-
image-minimal for the qemuarm machine:

# /etc/inittab: init(8) configuration.

# $Id: inittab,v 1.91 2002/01/25 13:35:21 miquels Exp $

# The default runlevel.

id:5:initdefault:

# Boot-time system configuration/initialization script.

# This is run first except when booting in emergency (-b) mode.

si::sysinit:/etc/init.d/rcS

# What to do in single-user mode.

~~:S:wait:/sbin/sulogin

# /etc/init.d executes the S and K scripts upon change

# of runlevel.

#

# Runlevel 0 is halt.

# Runlevel 1 is single-user.

# Runlevels 2-5 are multi-user.



# Runlevel 6 is reboot.

l0:0:wait:/etc/init.d/rc 0

l1:1:wait:/etc/init.d/rc 1

l2:2:wait:/etc/init.d/rc 2

l3:3:wait:/etc/init.d/rc 3

l4:4:wait:/etc/init.d/rc 4

l5:5:wait:/etc/init.d/rc 5

l6:6:wait:/etc/init.d/rc 6

# Normally not reached, but fallthrough in case of emergency.

z6:6:respawn:/sbin/sulogin

AMA0:12345:respawn:/sbin/getty 115200 ttyAMA0

# /sbin/getty invocations for the runlevels

#

# The "id" field MUST be the same as the last

# characters of the device (after "tty").

#

# Format:

# <id>:<runlevels>:<action>:<process>

#

1:2345:respawn:/sbin/getty 38400 tty1

The first entry, id:5:initdefault, sets the default runlevel to 5. The next entry,
si::sysinit:/etc/init.d/rcS, runs the rcS script at bootup. There will be more about
this later. A little further on, there is a group of six entries beginning with
l0:0:wait:/etc/init.d/rc 0. They run the /etc/init.d/rc script each time there is a
change in the runlevel. This script is responsible for processing the start and 
kill scripts.
Toward the end of inittab, there is an entry that runs a getty daemon to generate 
a login prompt on /dev/ttyAMA0 when entering runlevels 1 through 5, thereby allowing you
to log on and get an interactive shell:

AMA0:12345:respawn:/sbin/getty 115200 ttyAMA0

The ttyAMA0 device is the serial console on the Arm Versatile board we are emulating with
QEMU; it will be different for other development boards. There is also an entry to run
getty on tty1, which is triggered when entering runlevels 2 through 5. This is a virtual
console, which is often mapped to a graphical screen if you have built your kernel with
CONFIG_FRAMEBUFFER_CONSOLE or VGA_CONSOLE. Desktop Linux distributions usually spawn
six getty daemons on virtual terminals 1 to 6, which you can select with the key
combination Ctrl + Alt + F1 through Ctrl + Alt + F6, with virtual terminal 7 reserved for the
graphical screen. Ubuntu and Arch Linux are notable exceptions since they use virtual
terminal 1 for graphics. Virtual terminals are seldom used on embedded devices.
The /etc/init.d/rcS script that is run by the sysinit entry does little more than entering
the runlevel, S:

#!/bin/sh

[…]



exec /etc/init.d/rc S

Hence, the first runlevel entered is S, followed by the default runlevel of 5. Note that
runlevel S is not recorded and is never displayed as a prior runlevel by the runlevel
command.

The init.d scripts
Each component that needs to respond to a runlevel change has a script in /etc/init.d to
perform the change. The script should expect two parameters: start and stop. I will give
an example of this later.
The runlevel-handling script, /etc/init.d/rc, takes the runlevel it is switching to as 
a parameter. For each runlevel, there is a directory named rc<runlevel>.d:

# ls -d /etc/rc*

/etc/rc0.d /etc/rc2.d /etc/rc4.d /etc/rc6.d

/etc/rc1.d /etc/rc3.d /etc/rc5.d /etc/rcS.d

There you will find a set of scripts beginning with a capital S followed by two digits, and
you may also find scripts beginning with a capital K. These are the start and kill scripts,
respectively. Here is an example of the scripts for runlevel 5:

# ls /etc/rc5.d

S01networking S20hwclock.sh S99rmnologin.sh S99stop-bootlogd

S15mountnfs.sh S20syslog

These are in fact symbolic links back to the appropriate script in init.d. The rc script runs
all the scripts beginning with a K first, adding the stop parameter, and then runs those
beginning with an S, adding the start parameter. Once again, the two-digit code is there to
impart the order in which the scripts should run.

Adding a new daemon
Imagine that you have a program named simpleserver that is written as a traditional Unix
daemon; in other words, it forks and runs in the background. The code for such 
a program is in MELP/Chapter13/simpleserver. You will need an init.d script such as
this, which you will find in MELP/Chapter13/simpleserver-sysvinit:

#! /bin/sh

case "$1" in

      start)

           echo "Starting simpelserver"

           start-stop-daemon -S -n simpleserver -a /usr/bin/simpleserver

           ;;

     stop)

           echo "Stopping simpleserver"

           start-stop-daemon -K -n simpleserver



           ;;

     *)

           echo "Usage: $0 {start|stop}"

           exit 1

esac

exit 0

start-stop-daemon is a helper function that makes it easier to manipulate background
processes such as this. It originally came from the Debian installer package, dpkg, but most
embedded systems use the one from BusyBox. It starts the daemon with the -S parameter,
making sure that there is never more than one instance running at any one time. To stop a
daemon, you use the -K parameter, which causes it to send a signal, SIGTERM by default, to
indicate to the daemon that it is time to terminate.
To make simpleserver operational, copy the script to the target directory called 
/etc/init.d/simpleserver and make it executable. Then, add links from each of the
runlevels that you want to run this program from; in this case, only the default runlevel of 5:

# cd /etc/init.d/rc5.d

# ln -s ../init.d/simpleserver S99simpleserver

The number 99 means that this will be one of the last programs to be started. Bear in mind
that there may be other links beginning with S99, in which case the rc script will just run
them in lexical order.
It is rare in embedded devices to have to worry too much about shutdown operations, but if
there is something that needs to be done, add kill links to levels 0 and 6:

# cd /etc/init.d/rc0.d

# ln -s ../init.d/simpleserver K01simpleserver

# cd /etc/init.d/rc6.d

# ln -s ../init.d/simpleserver K01simpleserver

We can circumvent runlevels and ordering for more immediate testing and debugging of
init.d scripts.

Starting and stopping services
You can interact with the scripts in /etc/init.d by calling them directly. Here is an
example using the syslog script, which controls the syslogd and klogd daemons:

# /etc/init.d/syslog --help

Usage: syslog { start | stop | restart }

# /etc/init.d/syslog stop

Stopping syslogd/klogd: stopped syslogd (pid 198)

stopped klogd (pid 201)

done

# /etc/init.d/syslog start

Starting syslogd/klogd: done



All scripts implement start and stop, and they should also implement help. Some
implement status as well, which will tell you whether the service is running or not.
Mainstream distributions that still use System V init have a command named service to
start and stop services, which hides the details of calling the scripts directly.
System V init is a simple init daemon that has served Linux admins for decades. While
runlevels offer a greater degree of sophistication than BusyBox init, System V init still
lacks the ability to monitor services and restart them if needed. As System V init starts to
show its age, most popular Linux distributions have moved on to systemd.

systemd
systemd, https://www.freedesktop.org/wiki/Software/systemd/, defines itself as a system
and service manager. The project was initiated in 2010 by Lennart Poettering and Kay
Sievers to create an integrated set of tools for managing a Linux system based around an
init daemon. It also includes device management (udev) and logging, among other things.
systemd is state of the art and is still evolving rapidly. It is common on desktop and server
Linux distributions and is becoming popular on embedded Linux systems too, especially on
more complex devices. So, how is it better than System V init for embedded systems?

The configuration is simpler and more logical (once you understand it). Rather than
the sometimes convoluted shell scripts of System V init, systemd has unit
configuration files that are written in a well-defined format.
There are explicit dependencies between services, rather than a two-digit code that
merely sets the sequence in which the scripts are run.
It is easy to set the permissions and resource limits for each service, which is important
for security.
It can monitor services and restart them if needed.
Services are started in parallel, potentially reducing boot time.

A complete description of systemd is neither possible nor appropriate here. As with System
V init, I will focus on the embedded use cases with examples based on the configuration
produced by the Yocto Project 3.1 release, with systemd version 244. 
I will give a quick overview, and then show you some specific examples.

Building systemd with the Yocto Project and Buildroot
The default init daemon in the Yocto Project is System V. To select systemd, add this line
to your conf/local.conf:

INIT_MANAGER = "systemd"

Buildroot uses BusyBox init by default. You can select systemd though menuconfig by
looking in the System configuration | Init system menu. You will also have to configure

https://www.freedesktop.org/wiki/Software/systemd/


the toolchain to use glibc for the C library, since systemd does not support uClibc-ng or
musl. In addition, there are restrictions on the version and configuration of the kernel. There
is a complete list of library and kernel dependencies in the README file in the top level of the
systemd source code.

Introducing targets, services, and units
Before I describe how systemd works, I need to introduce these three key concepts:

unit: A configuration file that describes a target, a service, and several other things.
Units are text files that contain properties and values.
service: A daemon that can be started and stopped, very much like a System V init
service.
target: A group of services, similar to, but more general than, a System V init
runlevel. There is a default target that is the group of services that are started at 
boot time.

You can change states and find out what is going on using the systemctl command.
Units
The basic item of configuration is the unit file. Unit files are found in three different places:

/etc/systemd/system: Local configuration
/run/systemd/system: Runtime configuration
/lib/systemd/system: Distribution-wide configuration

When looking for a unit, systemd searches the directories in that order, stopping as soon as
it finds a match, and allowing you to override the behavior of a distribution-wide unit by
placing a unit of the same name in /etc/systemd/system. You can disable a unit
completely by creating a local file that is empty or linked to /dev/null.
All unit files begin with a section marked [Unit], which contains basic information and
dependencies. As an example, here is the Unit section of the D-Bus service,
/lib/systemd/system/dbus.service:

[Unit]

Description=D-Bus System Message Bus

Documentation=man:dbus-daemon(1)

Requires=dbus.socket

In addition to the description and a reference to the documentation, there is a dependency
on the dbus.socket unit expressed through the Requires keyword. This tells systemd to
create a local socket when the D-Bus service is started.
Dependencies in the Unit section are expressed through the Requires, Wants, and
Conflicts keywords:



Requires: A list of units that this unit depends on that are started when this unit is
started.
Wants: A weaker form of Requires; the units listed are started but the current unit is
not stopped if any of them fail.
Conflicts: A negative dependency; the units listed are stopped when this one is
started and, conversely, if one of them is started, this one is stopped.

These three keywords define outgoing dependencies. They are used mostly to create
dependencies between targets. There is another set of dependencies called incoming
dependencies, which are used to create links between services and targets. In other words,
outgoing dependencies are used to create the list of targets that need to be started as the
system goes from one state to another, and incoming dependencies are used to determine
the services that should be started or stopped in any particular state. Incoming dependencies
are created by the WantedBy keyword, which I will describe in the upcoming section on
Adding your own service.
Processing the dependencies produces a list of units that should be started or stopped. 
The Before and After keywords determine the order in which they are started. The order of
stopping is just the reverse of the start order:

Before: Start this unit before the units listed.
After: Start this unit after the units listed.

In the following example, the After directive makes sure that the web server is started after
the network subsystem is started:

[Unit]

Description=Lighttpd Web Server

After=network.target

In the absence of the Before or After directive, the units will be started or stopped in
parallel with no particular ordering.
Services
A service is a daemon that can be started and stopped, equivalent to a System V init
service. A service is a type of unit file with a name ending in .service, for example,
lighttpd.service.
A service unit has a [Service] section that describes how it should be run. Here is the
relevant section from lighttpd.service:

[Service]

ExecStart=/usr/sbin/lighttpd -f /etc/lighttpd/lighttpd.conf -D

ExecReload=/bin/kill -HUP $MAINPID

These are the commands to run when starting the service and restarting it. There are 
many more configuration points you can add here, so refer to the manual page for
systemd.service(5).
Targets



A target is another type of unit that groups services (or other types of units). A target 
is a metaservice in that respect and also serves as a synchronization point. A target 
only has dependencies. Targets have names ending in .target, for example, 
multi-user.target. A target is a desired state that performs the same role as System V
init runlevels. For example, this is the complete unit for multi-user.target:

[Unit]

Description=Multi-User System

Documentation=man:systemd.special(7)

Requires=basic.target

Conflicts=rescue.service rescue.target

After=basic.target rescue.service rescue.target

AllowIsolate=yes

This says that the basic target must be started before the multi-user target. It also says that
since it conflicts with the rescue target, starting the rescue target will cause the multi-user
target to be stopped first.

How systemd boots the system
Now, we can see how systemd implements the bootstrap. systemd is run by the kernel as a
result of /sbin/init being symbolically linked to /lib/systemd/systemd. It runs the
default target, default.target, which is always a link to the desired target, such as multi-
user.target for a text login or graphical.target for a graphical environment. For
example, if the default target is multi-user.target, you will find this symbolic link:

/etc/systemd/system/default.target -> /lib/systemd/system/multi-
user.target

The default target may be overridden by passing system.unit=<new target> on 
the kernel command line. You can use systemctl to find out the default target, as shown
here:

# systemctl get-default

multi-user.target

Starting a target such as multi-user.target creates a tree of dependencies that bring the
system into a working state. In a typical system, multi-user.target depends on
basic.target, which depends on sysinit.target, which depends on the services that
need to be started early. You can print a text graph using systemctl list-dependencies.
You can also list all the services and their current state using the following:

# systemctl list-units --type service

You can do the same for targets using the following:
# systemctl list-units --type target

Now that we've seen the dependency tree for the system, how do we insert an additional
service into this tree?



Adding your own service
Using the same simpleserver example as before, here is a service unit, which you will find
in MELP/Chapter13/simpleserver-systemd:

[Unit]

Description=Simple server

[Service]

Type=forking

ExecStart=/usr/bin/simpleserver

[Install]

WantedBy=multi-user.target

The [Unit] section only contains a description so that it shows up correctly when 
listed using systemctl and other commands. There are no dependencies; as I said, it 
is very simple.
The [Service] section points to the executable and has a flag to indicate that it forks. If it
were even simpler and ran in the foreground, systemd would do the daemonizing for us and
Type=forking would not be needed.
The [Install] section creates an incoming dependency on multi-user.target 
so that our server is started when the system goes into the multi-user mode.
Once the unit is saved in /etc/systemd/system/simpleserver.service, 
you can start and stop it using the systemctl start simpleserver and sytemctl stop
simpleserver commands. You can also use systemctl to 
find its current status:

# systemctl status simpleserver

simpleserver.service - Simple server

  Loaded: loaded (/etc/systemd/system/simpleserver.service; disabled)

  Active: active (running) since Thu 1970-01-01 02:20:50 UTC; 8s ago

Main PID: 180 (simpleserver)

  CGroup: /system.slice/simpleserver.service

          └─180 /usr/bin/simpleserver -n

Jan 01 02:20:50 qemuarm systemd[1]: Started Simple server.

At this point, it will only start and stop on command, as shown here. To make it persistent,
you need to add a permanent dependency to a target. This is the purpose of the [Install]
section in the unit; it says that when this service is enabled, it will become dependent on
multi-user.target, and so will be started at boot time. You enable it using systemctl
enable, like this:

# systemctl enable simpleserver

Created symlink from
/etc/systemd/system/multiuser.target.wants/simpleserver.service to
/etc/systemd/system/simpleserver.service.

Now, you can see how services add dependencies without having to keep on editing target
unit files. A target can have a directory named <target_name>.target.wants, which can



contain links to services. This is exactly the same as adding the dependent unit to the
[Wants] list in the target. In this case, you will find that this link has been created:

/etc/systemd/system/multi-user.target.wants/simpleserver.service ->
/etc/systemd/system/simpleserver.service

If this is an important service, you might want to restart it if it fails. You can accomplish
that by adding this flag to the [Service] section:

Restart=on-abort

Other options for Restart are on-success, on-failure, on-abnormal, on-watchdog, on-
abort, or always.

Adding a watchdog
Watchdogs are a common requirement in embedded devices: you need to take action if a
critical service stops working, usually by resetting the system. On most embedded SoCs,
there is a hardware watchdog, which can be accessed via the /dev/watchdog device node.
The watchdog is initialized with a timeout at boot, and then must be reset within that
period, otherwise the watchdog will be triggered, and the system will reboot. The interface
with the watchdog driver is described in the kernel source in Documentation/watchdog and
the code for the drivers is in drivers/watchdog.
A problem arises if there are two or more critical services that need to be protected 
by a watchdog. systemd has a useful feature that distributes the watchdog between multiple
services.
systemd can be configured to expect a regular keepalive call from a service and take
action if it is not received, creating a per-service software watchdog. For this to work, 
you have to add code to the daemon to send the keepalive messages. It needs to 
check for a non-zero value in the WATCHDOG_USEC environment variable, and then call
sd_notify(false, "WATCHDOG=1") within this time (a period of half of the watchdog
timeout is recommended). There are examples in the systemd source code.
To enable the watchdog in the service unit, add something like this to the 
[Service] section:

WatchdogSec=30s

Restart=on-watchdog

StartLimitInterval=5min

StartLimitBurst=4

StartLimitAction=reboot-force

In this example, the service expects a keepalive call every 30 seconds. If it fails to be
delivered, the service will be restarted, but if it is restarted more than four times in 5
minutes, systemd will force an immediate reboot. Once again, there is a full description of
these settings in the systemd.service(5) manual page.
A watchdog like this takes care of individual services, but what if systemd itself fails, the
kernel crashes, or the hardware locks up? In those cases, we need to tell systemd to use the



watchdog driver: just add RuntimeWatchdogSec=NN to
/etc/systemd/system.conf.systemd, which will reset the watchdog within that period,
and so the system will reset if systemd fails for some reason.

Implications for embedded Linux
systemd has a lot of features that are useful in embedded Linux, including many that I have
not mentioned in this brief description, such as resource control using slices (which are
described in the manual pages for systemd.slice(5) and systemd.resource-

control(5)), device management (udev(7)), and system logging facilities (journald(5)).
You have to balance that with its size: even with a minimal build of just the core
components, systemd, udevd, and journald, it is approaching 10 MiB of storage, including
the shared libraries.
You also have to keep in mind that systemd development follows the kernel and glibc
closely, so it will not work on a kernel and glibc more than a year or two older than the
release of systemd.

Summary
Every Linux device needs an init program of some kind. If you are designing a system that
only has to launch a small number of daemons at startup and remains fairly static after that,
then BusyBox init is sufficient for your needs. It is usually a good choice if you are using
Buildroot as the build system.
If, on the other hand, you have a system that has complex dependencies between 
services at boot time or runtime, and you have the storage space, then systemd would be the
best choice. Even without the complexity, systemd has some useful features in the way it
handles watchdogs, remote logging, and so on, so you should certainly give it serious
thought.
Meanwhile, System V init lives on. It is well understood, and there are init scripts
already in existence for every component that is important to us. It remains the default init
for the Yocto Project reference distribution (Poky).
In terms of reducing boot time, systemd is faster than System V init for a similar
workload. However, if you are looking for a very fast boot, neither beats the simple
BusyBox init with minimal boot scripts.
In the next chapter, we will look closely at a lesser-known init system that is well 
suited for embedded Linux systems. BusyBox runit offers the power and flexibility 
of systemd without the added complexity and overhead. If Buildroot is your choice 
of build system and BusyBox init does not meet your needs, then there are many good
reasons to consider BusyBox runit instead. We will learn what those reasons are and get
more hands-on experience with Buildroot in the process.



Further reading
 

systemd System and Service Manager:
https://www.freedesktop.org/wiki/Software/systemd/

There are a lot of useful links at the bottom of the page at the preceding
URL.

https://www.freedesktop.org/wiki/Software/systemd/


Chapter 14: Starting with BusyBox runit
In the previous chapter, we looked at the classic System V init and state-of-the-art
systemd programs. We also touched on BusyBox's minimal init program. Now, it is time
to look at BusyBox's implementation of the runit program. BusyBox runit strikes a
sensible balance between the simplicity of System V init and the flexibility of systemd.
For this reason, the full version of runit is used in popular modern Linux distributions like
Void. While systemd may dominate the cloud, it is usually overkill 
for many embedded Linux systems. BusyBox runit offers advanced features such as
service supervision and dedicated service logging without the complexity and overhead 
of systemd.
In this chapter, I will show you how to divide your system up into separate BusyBox runit
services, each with its own directory and run script. Next, we will see how check scripts
can be used to force some services to wait for other services to start. Then, we will add
dedicated logging to a service and learn how to configure log rotation. Finally, we close
with an example of one service sending a signal to another by writing to a named pipe.
Unlike System V init, BusyBox runit services start concurrently rather than sequentially,
which can speed up boot times dramatically. Your choice of init program has a noticeable
impact on the behavior and user experience of your product.
In this chapter, we will cover the following topics:

Getting BusyBox runit
Creating service directories and files
Service supervision
Depending on other services
Dedicated service logging
Signaling a service

Technical requirements
To follow along with the examples, make sure you have the following:

A Linux-based host system
Etcher for Linux
A microSD card reader and card
A USB to TTL 3.3V serial cable
A Raspberry Pi 4
A 5V 3A USB-C power supply



You should have already installed the 2020.02.9 LTS release of Buildroot for Chapter 6,
Selecting a Build System. If you have not, then refer to the System requirements section of
The Buildroot user manual (https://buildroot.org/downloads/manual/manual.html) before
installing Buildroot on your Linux host according to the instructions from Chapter 6.
All of the code for this chapter can be found in the Chapter14 folder of the book's GitHub
repository: https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-
Third-Edition.

Getting BusyBox runit
To prepare the system for this chapter, we need to do the following:

1. Navigate to the directory where you cloned Buildroot for Chapter 6, Selecting a Build
System:

$ cd buildroot

2. Check to see if runit is provided by BusyBox:
$ grep Runit package/busybox/busybox.config

# Runit Utilities

BusyBox runit was still an available option in the Buildroot 2020.02.9 LTS
release at the time of writing. Revert to that tag if you can no longer find
BusyBox runit in a later release.

3. Undo any changes and delete any untracked files or directories:
$ make clean

$ git checkout .

$ git clean –-force -d

Note that git clean --force will delete the Nova U-Boot patch and any
other files that we added to Buildroot in previous exercises.

4. Create a new branch named busybox-runit to capture your work:
$ git checkout -b busybox-runit

5. Add BusyBox runit to a default configuration for the Raspberry Pi 4:
$ cd configs

$ cp raspberrypi4_64_defconfig rpi4_runit_defconfig

$ cd ..

$ cp package/busybox/busybox.config \ 
board/raspberrypi/busybox-runit.config

$ make rpi4_runit_defconfig

$ make menuconfig

6. From the main menu, drill down into the Toolchain | Toolchain type submenu and
select External toolchain:

https://buildroot.org/downloads/manual/manual.html
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


Figure 14.1 – Selecting External toolchain

7. Back out one level and drill down into the Toolchain submenu. Select the Linaro
AArch64 toolchain, then back out another level to return to the main menu:



Figure 14.2 – Selecting the Linaro AArch64 toolchain

8. BusyBox should already be selected as the init system but you can confirm that by
navigating to the System configuration | Init system submenu and observing that
BusyBox is selected instead of systemV or systemd. Back out of the Init system
submenu up to the main menu.

9. From the main menu, drill down into the Target packages | BusyBox configuration
file to use? text field under BusyBox:



Figure 14.3 – Selecting a BusyBox configuration file to use

10. Replace the package/busybox/busybox.config string value in that text field with
board/raspberrypi/busybox-runit.config:



Figure 14.4 – BusyBox configuration file to use?

11. Exit out of menuconfig and choose Yes if asked to save your new configuration.
Buildroot saves the new configuration to a file named .config by default.

12. Update configs/rpi4_runit_defconfig with the new location of the BusyBox
configuration:

$ make savedefconfig

13. Now let's start configuring BusyBox for runit:
$ make busybox-menuconfig

14. Once inside busybox-menuconfig, you should notice a submenu called Runit
Utilities. Drill down into that submenu and select all of the options on that menu page.
The chpst, setuidgid, envuidgid, envdir, and softlimit utilities are command-line
tools that are frequently referenced by service run scripts, so it is best to include them
all. The svc and svok utilities are holdovers from daemontools so you can choose to
opt out of them if you feel so inclined:



Figure 14.5 – Runit Utilities

15. From the Runit Utilities submenu, drill down into the Default directory for services
text field.

16. Enter /etc/sv in the Default directory for services text field:



Figure 14.6 – Default directory for services

17. Exit out of busybox-menuconfig and choose Yes when asked to save your new
configuration. Like the menuconfig option, busybox-menuconfig only saves your new
BusyBox configuration to a .config file in an output directory. By default, the
BusyBox output directory is output/build/busybox-1.31.1 in the 2020.02.9 LTS
version of Buildroot.

18. Save your changes to board/raspberrypi/busybox-runit.config:
$ make busybox-update-config

19. BusyBox includes an inittab file for its init program in Buildroot's
package/busybox directory. This configuration file instructs BusyBox init to start
user space by mounting various filesystems and linking file descriptors to stdin,
stdout, and stderr device nodes. In order for BusyBox init to transfer control to
BusyBox runit, we need to replace the following lines in package/busybox/inittab:

# now run any rc scripts

::sysinit:/etc/init.d/rcS

These lines need to be replaced with their BusyBox runit equivalents:
# now switch over to runit

null::respawn:runsvdir /etc/sv

20. We also need to remove the following lines from BusyBox's inittab:
# Stuff to do before rebooting



::shutdown:/etc/init.d/rcK

No replacement line is needed for the deleted ::shutdown command since
BusyBox runit automatically terminates the processes it supervises prior to
reboot.

You now have new configs/rpi4_runit_defconfig and board/raspberrypi/busybox-
runit.config files as well as a modified package/busybox/inittab file that you can use
to enable BusyBox runit on a custom Linux image for the Raspberry Pi 4. Commit those
three files to Git so that your work is not lost.
To build your custom image, use the following commands:

$ make rpi4_runit_defconfig

$ make

When the build is complete, a bootable image is written to an output/images/sdcard.img
file. Flash this image onto a microSD card using Etcher, insert it into your Raspberry Pi 4,
and power it up. The system won't do much besides boot because there are no services in
/etc/sv for runsvdir to start yet.
To play around with BusyBox runit, attach a serial cable to your Raspberry Pi 4 and 
log in as root with no password. We did not add connman to this image so enter 
/sbin/ifup -a to bring up the Ethernet interface:

# /sbin/ifup -a

[  187.076662] bcmgenet: Skipping UMAC reset

[  187.151919] bcmgenet fd580000.genet: configuring instance for
external RGMII (no delay)

udhcpc: started, v1.31.1

udhcpc: sending discover

[  188.191465] bcmgenet fd580000.genet eth0: Link is Down

udhcpc: sending discover

[  192.287490] bcmgenet fd580000.genet eth0: Link is Up - 1Gbps/Full -
flow control rx/tx

udhcpc: sending discover

udhcpc: sending select for 192.168.1.130

udhcpc: lease of 192.168.1.130 obtained, lease time 86400

deleting routers

adding dns 192.168.1.254

We will examine the structure and layout of runit service directories in the next section.

Creating service directories and files
runit is a reimplementation of the daemontools process supervision kit. It was created by
Gerrit Pape as a replacement for System V init and other Unix init schemes. At the time
of writing, the two best sources of information on runit were Pape's website
(http://smarden.org/runit/) and Void Linux's online documentation.

http://smarden.org/runit/


BusyBox's implementation of runit differs from standard runit mostly in terms of 
self-documentation. For example, sv --help makes no mention of the sv utility's start
and check options, which are in fact supported by BusyBox's implementation. The source
code for BusyBox runit can be found in BusyBox's output/build/busybox-

1.31.1/runit directory. You can also browse the latest version of the BusyBox runit
source code online at https://git.busybox.net/busybox/tree/runit. If there are any bugs in, or
features missing from, BusyBox's implementation of runit, you can fix or add them by
patching Buildroot's busybox package.
The Arch Linux distribution supports using BusyBox runit alongside systemd for simple
process supervision. You can read more about how to do that on the Arch Linux Wiki.
BusyBox defaults to init and the steps for replacing BusyBox init with runit are not
documented. For these reasons, rather than replacing BusyBox init with runit, I will
instead show you how to use BusyBox runit to add service supervision to BusyBox init.

Service directory layout
The following is a quote from the Void Linux distribution's original documentation (now
deprecated) on runit:

https://git.busybox.net/busybox/tree/runit


"A service directory requires only one file, an executable named run which is
expected to exec a process in the foreground."

In addition to the requisite run script, a runit service directory can also contain a finish
script, a check script, and a conf file. A finish script is run on service shutdown or process
stop. The run script sources a conf file to set any environment variables prior to their use
inside run.
The /etc/sv directory, like the BusyBox init /etc/init.d directory, is conventionally
where runit services are stored. Here is a list of BusyBox init scripts for a simple
embedded Linux system:

$ ls output/target/etc/init.d

S01syslogd  S02sysctl   S21haveged  S45connman  S50sshd  rcS

S02klogd    S20urandom  S30dbus     S49ntp      rcK

Buildroot supplies these BusyBox init scripts as part of the packages for various daemons.
In the case of BusyBox runit, we have to produce these start scripts ourselves.
Here is the list of BusyBox runit services for the same system:

$ ls -D output/target/etc/sv

bluetoothd  dbus   haveged  ntpd  syslogd

connmand    dcron  klogd    sshd  watchdog

Each BusyBox runit service has its own directory with an executable run script inside of
it. The BusyBox init scripts that are also on the target image will not run on startup
because we removed ::sysinit:/etc/init.d/rcS from inittab. Unlike init scripts, run
scripts need to run in the foreground not the background in order to work with runit.
The Void Linux distribution is a treasure trove of runit service files. Here is a Void run
script for sshd:

#!/bin/sh

# Will generate host keys if they don't already exist

ssh-keygen -A >/dev/null 2>&1

[ -r conf ] && . ./conf

exec /usr/sbin/sshd -D $OPTS 2>&1

The runsvdir utility starts and monitors the collection of services defined under the 
/etc/sv directory. For that reason, the run script for sshd needs to be installed as 
/etc/sv/sshd/run so that runsvdir can find it on startup. It also must be made executable
or BusyBox runit won't be able to start it.
Contrast the contents of /etc/sv/sshd/run with this excerpt from Buildroot's 
/etc/init.d/S50sshd:

start() {

      # Create any missing keys

      /usr/bin/ssh-keygen -A

      printf "Starting sshd: "

      /usr/sbin/sshd

      touch /var/lock/sshd



      echo "OK"

}

sshd runs in the background by default. The -D option forces sshd to run in the foreground.
runit expects you to preface foregrounded commands with exec in your run scripts. The
exec command replaces the current program in the current process. The end result is that
the ./run process started from /etc/sv/sshd becomes the /usr/sbin/sshd -D process
without forking:

# ps aux | grep "[s]shd"

  201 root     runsv sshd

  209 root     /usr/sbin/sshd -D

Notice that the sshd run script sources a conf file for the $OPTS environment variable. If no
conf file exists inside /etc/sv/sshd, then $OPTS is undefined and empty, which in this case
happens to be fine. Like most runit services, sshd does not need a finish script to release
any resources prior to system shutdown or reboot.

Service configuration
The init scripts that Buildroot includes in its packages are BusyBox init scripts. These
init scripts need to be ported to BusyBox runit and installed to different directories under
output/target/etc/sv. Rather than patch each package individually, I find it easier to
bundle all the service files in a rootfs overlay or umbrella package outside of the Buildroot
tree. Buildroot enables out-of-tree customizations by way of the BR2_EXTERNAL make
variable, which points to a directory containing the customizations.
The most common way to get Buildroot into a br2-external tree is to embed it in the top
level of a Git repo as a submodule:

$ cat .gitmodules

[submodule "buildroot"]

     path = buildroot

     url = git://git.buildroot.net/buildroot

     ignore = dirty

     branch = 15a05e6d5a875759d217d61b3c7b31ec87ea4eb5

Embedding Buildroot as a submodule simplifies the maintenance of any packages that you
add or patches that you apply to Buildroot. The submodule is pinned to a tag so that any
out-of-tree customizations remain stable until Buildroot is purposely upgraded. Notice that
commit hash for the above buildroot submodule is pinned to the 2020.02.9 tag for that
Buildroot LTS release:

$ cd buildroot

$ git show --summary

commit 15a05e6d5a875759d217d61b3c7b31ec87ea4eb5 (HEAD -> busybox-runit,
tag: 2020.02.9)

Author: Peter Korsgaard <peter@korsgaard.com>

Date:   Sun Dec 27 17:55:12 2020 +0100



    Update for 2020.02.9

    

    Signed-off-by: Peter Korsgaard <peter@korsgaard.com>

To run make when buildroot is a subdirectory of the parent BR2_EXTERNAL directory we
need to pass some additional arguments:

$ make -C $(pwd)/buildroot BR2_EXTERNAL=$(pwd) O=$(pwd)/output

Here is the directory structure Buildroot recommends for a br2-external tree:
+-- board/

|   +-- <company>/

|       +-- <boardname>/

|           +-- linux.config

|           +-- busybox.config

|           +-- <other configuration files>

|           +-- post_build.sh

|           +-- post_image.sh

|           +-- rootfs_overlay/

|           |   +-- etc/

|           |   +-- <some file>

|           +-- patches/

|               +-- foo/

|               |   +-- <some patch>

|               +-- libbar/

|                   +-- <some other patches>

+-- configs/

|   +-- <boardname>_defconfig

+-- package/

|   +-- <company>/

|       +-- package1/

|       |    +-- Config.in

|       |    +-- package1.mk

|       +-- package2/

|           +-- Config.in

|           +-- package2.mk

+-- Config.in

+-- external.mk

+-- external.desc

Notice where the custom rpi4_runit_defconfig and busybox-runit.config 
files you created in the previous section would be inserted into this tree. According to
Buildroot's guidelines, those two configs are supposed to be board-specific files.
<boardname>_defconfig is prefixed with the name of the board the image is being
configured for. busybox.config goes in a corresponding board/<company>/<boardname>
directory. Also notice that the rootfs_overlay/etc directory where your custom BusyBox
inittab would go is board-specific as well.



Since all the service configuration files for BusyBox runit reside in /etc/sv, it might
seem reasonable to commit them all to a board-specific rootfs overlay. In my experience,
this solution quickly becomes too inflexible. Oftentimes there is a need to configure more
than one image for the same board. For instance, a consumer device may have separate
development, production, and manufacturing images. Each image contains distinct services,
so configuration needs to vary between images. For these reasons, service configuration is
best done at the package level, not the board level. I use out-of-tree umbrella packages 
(one package for each type of image) to configure services for BusyBox runit.
At the top-level, a br2-external tree must contain external.desc, external.mk, and
Config.in files. An external.desc file contains some basic metadata describing the br2-
external tree:

$ cat external.desc

name: ACME

desc: Acme's external Buildroot tree

Buildroot sets the BR2_EXTERNAL_<name>_PATH variable to the absolute path of the br2-
external tree so that variable can be referenced in Kconfig and makefiles. The desc field is
an optional description made available as the BR2_EXTERNAL_<name>_DESC variable.
Substitute <name> with ACME according to this external.desc. An external.mk file
typically only contains a single line referencing the BR2_EXTERNAL_<name>_PATH variable
defined in external.desc:

$ cat external.mk

include $(sort $(wildcard
$(BR2_EXTERNAL_ACME_PATH)/package/acme/*/*.mk))

That include line tells Buildroot where to search for external package .mk files. The
locations of the corresponding Config.in files for the external packages are defined in the
top-level Config.in file for the br2-external tree:

$ cat Config.in

source "$BR2_EXTERNAL_ACME_PATH/package/acme/development/Config.in"

source "$BR2_EXTERNAL_ACME_PATH/package/acme/manufacturing/Config.in"

source "$BR2_EXTERNAL_ACME_PATH/package/acme/production/Config.in"

Buildroot reads the br2-external tree's Config.in file and adds the package recipes
contained therein to the top-level configuration menu. Let's fill in the rest of Buildroot's
br2-external tree structure with the development, manufacturing, and production
umbrella packages:

├── configs

│   ├── supergizmo_development_defconfig

│   ├── supergizmo_manufacturing_defconfig

│   └── supergizmo_production_defconfig

└── package

    └── acme

        ├── development

        │   ├── Config.in

        │   ├── development.mk

│ ├



        │   ├── haveged_run

        │   ├── inittab

        │   ├── ntpd.etc.conf

        │   ├── sshd_config

        │   ├── sshd_run

        │   └── user-tables.txt

        ├── manufacturing

        │   ├── apply-squash-update

        │   ├── Config.in

        │   ├── haveged_run

        │   ├── inittab

        │   ├── manufacturing.mk

        │   ├── mfg-profile

        │   ├── sshd_config

        │   ├── sshd_run

        │   ├── test-button

        │   ├── test-fan

        │   ├── test-gps

        │   ├── test-led

        │   └── user-tables.txt

        └── production

            ├── Config.in

            ├── dcron-root

            ├── download-apply-update

            ├── inittab

            ├── ntpd.etc.conf

            ├── ota.acme.systems.crt

            ├── production.mk

            └── user-tables.txt

If you compare this directory tree with Buildroot's previous one, you can see that
<boardname> has been replaced with supergizmo and <company> has been replaced with
acme. You can think of an umbrella package as an image overlay on top of some common
base image. That way, all three images can share the same U-Boot, kernel, and drivers so
that their changes only apply to user space.
Consider what packages need to be included on a device's development image for it to be
effective. At a minimum, developers expect to be able to ssh into the device, execute
commands with sudo, and edit onboard files with vim. Additionally, they want to be able to
trace, debug, and profile their programs using tools such as strace, gdb, and perf. None of
that software belongs on a device's production image for security reasons.
Config.in for the development umbrella package selects packages that should only be
deployed to an in-house developer's preproduction hardware:

$ cat package/acme/development/Config.in

config BR2_PACKAGE_DEVELOPMENT



     bool "development"

     select BR2_PACKAGE_HAVEGED

     select BR2_PACKAGE_OPENSSH

     select BR2_PACKAGE_SUDO

     select BR2_PACKAGE_TMUX

     select BR2_PACKAGE_VIM

     select BR2_PACKAGE_STRACE

     select BR2_PACKAGE_LINUX_TOOLS_PERF

     select BR2_PACKAGE_GDB

     select BR2_PACKAGE_GDB_SERVER

     select BR2_PACKAGE_GDB_DEBUGGER

     select BR2_PACKAGE_GDB_TUI

     help

       The development image overlay for Acme's SuperGizmo.

The different service scripts and configuration files get written to the output/target
directory during the install step of the package build process. Here is the relevant excerpt
from package/acme/development/development.mk:

define DEVELOPMENT_INSTALL_TARGET_CMDS

     $(INSTALL) -D -m 0644 $(@D)/inittab $(TARGET_DIR)/etc/inittab

     $(INSTALL) -D -m 0755 $(@D)/haveged_run
$(TARGET_DIR)/etc/sv/haveged/run

     $(INSTALL) -D -m 0755 $(@D)/sshd_run $(TARGET_DIR)/etc/sv/sshd/run

     $(INSTALL) -D -m 0644 $(@D)/sshd_config
$(TARGET_DIR)/etc/ssh/sshd_config

endef

Buildroot <package>.mk files contain <package>_BUILD_CMDS and
<package>_INSTALL_TARGET_CMDS sections. This umbrella package is named development
so the install macro for it is defined as DEVELOPMENT_INSTALL_TARGET_CMDS. The
<package> prefix needs to match the <package> suffix in the config BR2_<package> line
of the package's Config.in file or the macro names will result in package build errors.
The haveged/run and sshd/run scripts are installed to the /etc/sv directory on the target.
The custom inittab needed to start runsvdir is installed to /etc on the target. Unless
these files are installed in their right place with their intended permissions, BusyBox runit
cannot start the haveged or sshd services.
haveged is a software random number generator meant to alleviate low-entropy conditions
in the Linux /dev/random device. Low-entropy conditions can block sshd from starting
because the SSH protocol relies heavily on random numbers. Some newer SoCs may not
yet have kernel support for their hardware random number generators. Without also running
haveged on these systems, sshd can take several minutes to begin accepting connections
after booting.
Running haveged under BusyBox runit is quite simple:

$ cat package/acme/development/haveged_run

#!/bin/sh



exec /usr/sbin/haveged -w 1024 -r 0 -F

The production and manufacturing umbrella packages superimpose different sets of
packages and services onto the image. The production image includes tools for
downloading and applying software updates. The manufacturing image includes tools that
factory technicians would use to provision and test the hardware. BusyBox runit is also a
good fit for both of those use cases.
Config.in for the production umbrella package selects packages that are needed for
periodic over-the-air software updates:

$ cat package/acme/production/Config.in

config BR2_PACKAGE_PRODUCTION

     bool "production"

     select BR2_PACKAGE_DCRON

     select BR2_PACKAGE_LIBCURL

     select BR2_PACKAGE_LIBCURL_CURL

     select BR2_PACKAGE_LIBCURL_VERBOSE

     select BR2_PACKAGE_JQ

     help

       The production image overlay for Acme's SuperGizmo.

Forced OTA updates are often undesirable in development and manufacturing
environments, so these packages are excluded from those images. The production image
includes a download-apply-update script that uses curl to query an OTA server for a
newly available software update. A public SSL certificate is also included onboard so curl
can verify the authenticity of the OTA server. The dcron daemon is configured to run
download-apply-update every 10 to 20 minutes with some noise to avoid the stampeding
herd. If a newer update is available, the script then downloads the image, verifies it, and
applies it to the microSD card before rebooting. Here is the relevant excerpt from
package/acme/production/production.mk:

define PRODUCTION_INSTALL_TARGET_CMDS

     $(INSTALL) -D -m 0644 $(@D)/inittab $(TARGET_DIR)/etc/inittab

     $(INSTALL) -D -m 0644 $(@D)/dcron-root
$(TARGET_DIR)/etc/cron.d/root

     $(INSTALL) -D -m 0775 $(@D)/download-apply-update
$(TARGET_DIR)/usr/sbin/download-apply-update

     $(INSTALL) -D -m 0644 $(@D)/ota.acme.com.crt
$(TARGET_DIR)/etc/ssl/certs/ota.acme.com.crt

     $(INSTALL) -D -m 0644 $(@D)/ntpd.etc.conf
$(TARGET_DIR)/etc/ntp.conf

endef

Build the production image cd to the root of the br2-external tree and issue the following
commands:

$ make clean

$ make supergizmo_production_defconfig

$ make



The steps for building the development and manufacturing images for the Acme
SuperGizmo differ only in the choice of defconfig. The three defconfigs are almost
identical except for the last line, which is either BR2_PACKAGE_DEVELOPMENT=y,
BR2_PACKAGE_PRODUCTION=y, or BR2_PACKAGE_MANUFACTURING=y depending on the choice
of image. The three umbrella packages are meant to be mutually exclusive so do not select
more than one umbrella package for inclusion in the same image or you are likely to
encounter unexpected results.

Service supervision
Once we have created service directories with run scripts under /etc/sv and ensured that
BusyBox init starts runsvdir, BusyBox runit handles all the rest. That includes starting,
stopping, monitoring, and restarting all the services under its control. The runsvdir utility
starts a runsv process for each service directory and restarts a runsv process if it
terminates. Because run scripts run their respective daemons in the foreground, runsv
expects run to block so that when run exits, runsv will restart it automatically.
Service auto-restart is desirable during system startup because run scripts can crash. This is
especially true under BusyBox runit where services start virtually simultaneously instead
of one after the other. For instance, a service may fail to start when a dependent service or
essential system resource (such as a GPIO or device driver) is not yet available. In the next
section, I will show you how to express dependencies between services so that your system
startup sequence remains deterministic.
Here are the runsv processes running on our simple embedded Linux system:

# ps aux | grep "[r]unsv"

  177 root     runsvdir /etc/sv

  179 root     runsv ntpd

  180 root     runsv haveged

  181 root     runsv syslogd

  182 root     runsv dcron

  185 root     runsv dbus

  187 root     runsv bluetoothd

  192 root     runsv watchdog

  195 root     runsv connmand

  199 root     runsv sshd

  202 root     runsv klogd

Notice that the runsvdir /etc/sv command in the inittab does not execute until PID
177. The process with PID 1 is /sbin/init, which is just a symbolic link pointing to
/bin/busybox. PIDs 2 to 176 (not shown) are all kernel threads and system services so their
commands appear inside square brackets when displayed by ps. Square brackets mean that
a process does not have an actual command line associated with it. Since connmand and
bluetoothd both depend on D-Bus to start, runsv may have restarted either service
multiple times before D-Bus is up and running:



# pstree -a

init

  |-getty -L 115200 ttyS0

  |-hciattach /dev/ttyAMA0 bcm43xx 921600 flow - 60:81:f9:b0:8a:02

  |-runsvdir /etc/sv

  |   |-runsv ntpd

  |   |   `-ntpd -u ntp -c /etc/ntp.conf -U 60 -g -n

  |   |       `-{ntpd}

  |   |-runsv haveged

  |   |   `-haveged -w 1024 -r 0 -F

  |   |-runsv syslogd

  |   |   `-syslogd -n -O /var/data/log/messages -b 99 -s 1000

  |   |-runsv dcron

  |   |-runsv dbus

  |   |   `-dbus-daemon --system --nofork --nopidfile --syslog-only

  |   |-runsv bluetoothd

  |   |   `-bluetoothd -E --noplugin=* -n

  |   |-runsv watchdog

  |   |   `-watchdog -T 10 -F /dev/watchdog

  |   |-runsv connmand

  |   |   `-connmand -n

  |   |-runsv sshd

  |   |   `-sshd -D

  |   `-runsv klogd

  |       `-klogd -n

  `-wpa_supplicant -u

Some services require a connection to the internet before they can start. This can delay
service start by several seconds due to the asynchronous nature of DHCP. Since connmand
manages all the network interfaces on this system, these services in turn depend on
connmand. If the IP address of the device changes due to switching between networks or
renewal of the DHCP lease, many of these same services may need to be restarted.
Fortunately, BusyBox runit offers a way to restart services easily from the command line.

Controlling services
BusyBox runit provides an sv command-line tool for managing and inspecting services:

# sv --help

BusyBox v1.31.1 () multi-call binary.

Usage: sv [-v] [-w SEC] CMD SERVICE_DIR...

Control services monitored by runsv supervisor.

Commands (only first character is enough):

status: query service status

up: if service isn't running, start it. If service stops, restart it



once: like 'up', but if service stops, don't restart it

down: send TERM and CONT signals. If ./run exits, start ./finish

     if it exists. After it stops, don't restart service

exit: send TERM and CONT signals to service and log service. If they
exit,

     runsv exits too

pause, cont, hup, alarm, interrupt, quit, 1, 2, term, kill: send

STOP, CONT, HUP, ALRM, INT, QUIT, USR1, USR2, TERM, KILL signal to
service

The help message for sv explains what the up, once, down, and exit commands do. It also
illustrates how the pause, cont, hup, alarm, interrupt, quit, 1, 2, term, and kill
commands map directly to POSIX signals. Notice that the first character of each command
is enough to invoke it.
Let's experiment with various sv commands using ntpd as our target service. Your status
times will vary from mine depending on how long you wait between commands:

1. Restart the ntpd service:
# sv t /etc/sv/ntpd

# sv s /etc/sv/ntpd

run: /etc/sv/ntpd: (pid 1669) 6s

The sv t command restarts a service and the sv s command gets its status. 
The t is short for term so sv t sends a service the TERM signal before
restarting it. The status message says that ntpd has been running for 6
seconds since restarting.

2. Now let's see what happens to the status when we use sv d to stop the 
ntpd service:

# sv d /etc/sv/ntpd

# sv s /etc/sv/ntpd

down: /etc/sv/ntpd: 7s, normally up

This time, the status message says that ntpd has been down for 7 seconds
since it was stopped.

3. Start the ntpd service back up:
# sv u /etc/sv/ntpd

# sv s /etc/sv/ntpd

run: /etc/sv/ntpd: (pid 2756) 5s

The status message now says that ntpd has been running for 5 seconds since
starting. Notice that the PID is higher than before because the system has
been running for some time since ntpd was restarted.

4. Do a one-off start of ntpd:
# sv o /etc/sv/ntpd

# sv s /etc/sv/ntpd

run: /etc/sv/ntpd: (pid 3795) 3s, want down



The sv o command is like sv u except that the target service does not restart
again if it stops. You can confirm that by sending a KILL signal to the ntpd
service using sv k /etc/sv/ntpd and observing that the ntpd service goes
down and stays down.

Here are the long forms of the sv commands we covered:
# sv term /etc/sv/ntpd

# sv status /etc/sv/ntpd

# sv down /etc/sv/ntpd

# sv up /etc/sv/ntpd

# sv once /etc/sv/ntpd

If a service needs conditional error or signal handling, you can define that logic inside a
finish script. A service finish script is optional and executes whenever run exits. A
finish script takes two arguments: $1, an exit code from run, and $2, the least significant
byte of the exit status as determined by the waitpid system call. The exit code from run is
0 when run exits normally and -1 when run exits abnormally. The status byte is 0 when run
exits normally and the signal number when run is terminated by a signal. If runsv is unable
to start run, then the exit code is 1 and the status byte is 0.
A service that detects IP address changes could restart network services by shelling out to
sv t. This is similar to what ifplugd does except that ifplugd triggers on Ethernet link
state instead of IP address changes. Such a service could be as simple as a shell script
comprised of a single while loop that continuously polls all the network interfaces. You can
also issue sv commands from a run or finish script as a way to communicate between
services. I will show you how to do that in the next section.

Depending on other services
I mentioned how some services like connmand and bluetoothd require D-Bus. D-Bus is a
message system bus that enables publish-subscribe interprocess communication. The
Buildroot package for D-Bus provides a system dbus-daemon and a reference libdbus
library. The libdbus library implements the low-level D-Bus C API but higher-level
bindings to libdbus exist for other languages like Python. Some languages also offer
alternative implementations of the D-Bus protocol that do not depend on libdbus at all. D-
Bus services such as connmand and bluetoothd expect the system dbus-daemon to already
be running before they can start.

Start dependencies
The official runit documentation recommends using sv start to express dependencies on
other services under the control of runit. To make sure D-Bus is available before connmand
starts, you should define your /etc/sv/connmand/run accordingly:

#!/bin/sh



/bin/sv start /etc/sv/dbus > /dev/null || exit 1

exec /usr/sbin/connmand -n

sv start /etc/sv/dbus attempts to start the system dbus-daemon if it is not already
running. The sv start command is like sv up except that it will wait up to however many
seconds are specified by the -w argument or SVWAIT environment variable for the service to
start. The default maximum wait time when no -w argument or SVWAIT environment
variable is defined is 7 seconds. If the service is already up, it returns an exit code of 0 for
success. An exit code of 1 indicates failure causing /etc/sv/connmand/run to exit
prematurely without starting connmand. The runsv process that monitors connmand will
continue trying to start the service until it eventually succeeds.
Here is our corresponding /etc/sv/dbus/run, which I derived from Void's:

#!/bin/sh

[ ! -d /var/run/dbus ] && /bin/install -m755 -g 22 -o 22 -d
/var/run/dbus

[ -d /tmp/dbus ] || /bin/mkdir -p /tmp/dbus

exec /bin/dbus-daemon --system --nofork --nopidfile --syslog-only

Contrast that with the following excerpt from Buildroot's /etc/init.d/S30dbus:
# Create needed directories.

[ -d /var/run/dbus ] || mkdir -p /var/run/dbus

[ -d /var/lock/subsys ] || mkdir -p /var/lock/subsys

[ -d /tmp/dbus ] || mkdir -p /tmp/dbus

RETVAL = 0

start() {

    printf "Starting system message bus: "

    dbus-uuidgen --ensure

    dbus-daemon --system

    RETVAL=$?

    echo "done"

    [ $RETVAL -eq 0 ] && touch /var/lock/subsys/dbus-daemon

}

stop() {

    printf "Stopping system message bus: "

    ## we don't want to kill all the per-user $processname, we want

    ## to use the pid file *only*; because we use the fake nonexistent

    ## program name "$servicename" that should be safe-ish

    killall dbus-daemon

    RETVAL=$?

    echo "done"

    if [ $RETVAL -eq 0 ]; then

        rm -f /var/lock/subsys/dbus-daemon

        rm -f /var/run/messagebus.pid

    fi

}



Notice how much more complex Buildroot's version of the D-Bus service script is. Because
runit runs the dbus-daemon in the foreground, there is no need for lock or pid files and all
the ceremony associated with those. You might presume that the preceding stop() function
makes for a good finish script except that in the case of runit, there is no dbus-daemon to
kill or pid or lock files to delete. Service finish scripts are optional in runit so they
should only be reserved for meaningful work.

Custom start dependencies
If a check exists in the /etc/sv/dbus directory, sv runs this script to check whether or not
the service is available. A service is considered to be available if check exits with 0. The
check mechanism enables you to express additional postconditions for a service being
available besides a running process. For example, just because connmand has started does
not mean that a connection to the internet has necessarily been established. check scripts
ensure that a service completes what it was intended to do before other services can start.
To verify whether Wi-Fi is up or not, you could define the following check:

#!/bin/sh

WIFI_STATE=$(cat /sys/class/net/wlan0/operstate)

"$WIFI_STATE" = "up" || exit 1

exit 0

By installing the preceding script to /etc/sv/connmand/check, you make Wi-Fi a
requirement for the connmand service to start. That way, when you issue sv start

/etc/sv/connmand, the command only returns an exit code of 0 if the Wi-Fi interface is up
even if connmand is running.
You can execute check scripts without starting a service using the sv check command.
Like sv start, if check exists in the service directory, sv runs this script to determine
whether or not the service is available. A service is considered available if check exits with
0. sv will wait up to 7 seconds for check to return with an exit code of 0. Unlike sv start,
if check returns a nonzero exit code, sv does not attempt to start the service.

Putting it all together
We have seen how the sv start and check mechanisms enable us to express start
dependencies between services. Combining these features with finish scripts enables us to
construct process supervision trees. For example, a service that acts as a parent process
could call sv down to bring down its dependent child services when it stops. This advanced
level of customization is what I believe makes BusyBox runit so powerful. You can tailor
your system to behave just how you want it to using only simple, well-defined shell scripts.
To learn more about supervision trees, I recommend the literature on Erlang fault tolerance.



Dedicated service logging
A dedicated service logger only logs the output coming from a single daemon. Dedicated
logging is nice because diagnostic data for different services is distributed across separate
log files. The monolithic log files generated by centralized system loggers such as syslogd
are often hard to untangle. Both forms of logging have their purpose: dedicated logging
excels at readability and centralized logging offers context. Your services can each have
their own dedicated loggers and still write to syslog so you sacrifice neither.

How does it work?
Because service run scripts run in the foreground, adding a dedicated logger to a service
only involves redirecting standard output from a service's run to a log file. You enable
dedicated service logging by creating a log subdirectory inside the target service directory
with another run script inside of it. This additional run is for the service's logger, not the
service itself. When this log directory exists, a pipe is opened from the output of the run
process in the service directory to the input of the run process in the log directory.
Here is a possible service directory layout for sshd:

# tree etc/sv/sshd

etc/sv/sshd

|-- finish

|-- log

|   `-- run

`-- run

More precisely, when the BusyBox runit runsv process encounters this service directory
layout, it does several things in addition to starting sshd/run and sshd/finish if and when
necessary:

1. Creates a pipe
2. Redirects standard out from run and finish to the pipe
3. Switches to the log directory
4. Starts log/run
5. Redirects the standard input of log/run to read from the pipe

runsv starts and monitors sshd/log/run just like it starts and monitors sshd/run. Once you
add a logger for sshd, you'll notice that sv d /etc/sv/sshd only stops sshd. To stop the
logger, you must enter sv d /etc/sv/sshd/log unless you add that command to the
/etc/sv/sshd/finish script.

Adding dedicated logging to a service



BusyBox runit provides an svlogd logging daemon for use in your log/run scripts:
# svlogd --help

BusyBox v1.31.1 () multi-call binary.

Usage: svlogd [-tttv] [-r C] [-R CHARS] [-l MATCHLEN] [-b BUFLEN] DIR...

Read log data from stdin and write to rotated log files in DIRs

-r C       Replace non-printable characters with C

-R CHARS   Also replace CHARS with C (default _)

-t         Timestamp with @tai64n

-tt        Timestamp with yyyy-mm-dd_hh:mm:ss.sssss

-ttt       Timestamp with yyyy-mm-ddThh:mm:ss.sssss

-v         Verbose

Notice that svlogd requires one or more DIR output directory paths as arguments.
To add dedicated logging to an existing BusyBox runit service, do the following:

1. Create a log subdirectory inside the service directory.
2. Create a run script inside the log subdirectory.
3. Make that run script executable.
4. Use exec to run svlogd inside run.

Here is an /etc/sv/sshd/log/run script from Void:
#!/bin/sh

[ -d /var/log/sshd ] || mkdir -p /var/log/sshd

exec chpst -u root:adm svlogd -t /var/log/sshd

Since svlogd will write sshd log files to /var/log/sshd, we first need to create that
directory if it does not already exist. For sshd log files to persist, you may need to modify
your inittab to mount /var to a writable flash partition on boot up before starting
runsvdir. The chpst -u root:adm portion of the exec ensures that svlogd runs with root
user and adm group privileges and permissions.
The -t option prefixes each line written to the log file with a TAI64N-formatted timestamp.
While TAI64N timestamps are precise, they are not the most human-readable. The other
timestamp options svlogd provides are -tt and -ttt. Some daemons write their own
timestamps to standard out. To avoid writing lines with confusing double timestamps,
simply omit -t or any of its variants from your log/run svlogd command.
You may be tempted to add a dedicated logger to the klogd and syslogd services. Resist
that temptation. klogd and syslogd are system-wide logging daemons and 
they are both very good at what they do. There is really no point in logging what a 
logger is doing unless it is malfunctioning and you need to debug it. If you develop a
service that logs to both stdout and syslog, make sure to exclude timestamps from the
syslog message text. The syslog protocol includes a timestamp field for you to embed
timestamps.
Each dedicated logger runs in its own separate process. The extra overhead needed to
support these additional logger processes is something to consider when designing your



embedded system. If you intend to use BusyBox runit to supervise numerous services on a
resource-constrained system, be selective about which services to add dedicated logging to,
otherwise responsiveness may suffer.

Log rotation
svlogd rotates log files automatically using a default of 10 log files each up to 1 million
bytes in size. Recall that these rotated log files are written out to one or more DIR output
directories paths passed into svlogd as arguments. Of course, these rotation settings are
configurable, but before I get into that, let me explain how log rotation works.
Let's assume that svlogd somehow knows about two values named NUM and SIZE. NUM is the
number of log files to retain. SIZE is the maximum size of a log file. svlogd appends log
messages to a log file named current. When the size of current reaches SIZE bytes, then
svlogd rotates current.
To rotate the current file, svlogd will do the following:

1. Close the current log file.
2. Make current read-only.
3. Rename current to @<timestamp>.s.
4. Create a new current log file and start writing to it.
5. Count the number of existing log files besides current.
6. Delete the oldest log file if count is equal to or exceeds NUM.

<timestamp> used to rename the current log file that is being rotated out is the timestamp
at the time of file rotation, not creation.
Now observe the descriptions of SIZE, NUM, and PATTERN here:

# svlogd --help

BusyBox v1.31.1 () multi-call binary.

[Usage not shown]

DIR/config file modifies behavior:

sSIZE - when to rotate logs (default 1000000, 0 disables)

nNUM - number of files to retain

!PROG - process rotated log with PROG

+,-PATTERN - (de)select line for logging

E,ePATTERN - (de)select line for stderr

These settings are read from a DIR/config file if it exists. Notice that a SIZE of 0 disables
log rotation and is not the default. Here is a DIR/config file that causes svlogd to keep up
to 100 log files each up to 9,999,999 bytes in size for a total of roughly 1 GB in rotating
logs written to one output directory:

s9999999

n100



If multiple DIR output directories are passed to svlogd, then svlogd logs to all of them.
Why would you want to log the same messages to more than one directory? The answer is
that you don't log the same messages to multiple directories. Since every output directory
has its own config file, you use pattern matching to select which messages to log to which
output directory.
Assuming PATTERN of length N, if a line in DIR/config starts with +, -, E, or e, svlogd
matches the first N characters of each log message against PATTERN accordingly. The + and -
prefixes apply to current and the E and e prefixes apply to standard error. +PATTERN selects
and -PATTERN filters out matching lines for logging to current. EPATTERN selects and
ePATTERN filters out matching lines for alerting to standard error.

Signaling a service
Earlier, in the Start dependencies section, I showed how the sv command-line tool can be
used to control a service. Later on, I demonstrated how the sv start and sv down

commands can be used inside run and finish scripts to communicate between services.
You may have already guessed that runsv is sending POSIX signals to the run processes
that it supervises when an sv command executes. But what you may not have known is that
the sv tool controls its target runsv process over a named pipe. The named pipes
supervise/control and optionally log/supervise/control are opened so that other
processes can send commands to runsv. Signaling a service is easy with sv commands, but
if you want to, you can bypass sv entirely and write control characters directly to the
control pipe(s).
The runtime directory layout of a service with no dedicated logging looks like this:

# tree /etc/sv/syslogd

/etc/sv/syslogd

|-- run

`-- supervise

    |-- control

    |-- lock

    |-- ok

    |-- pid

    |-- stat

    `-- status

The control file under /etc/sv/syslogd is the service's named pipe. The pid and stat
files contain the live PID and status values (run or down) of the service. The supervise
subdirectory and all of its contents are created and populated by runsv syslogd when the
system starts up. If a service includes a dedicated logger, runsv will generate a supervise
subdirectory for that as well.
The following control characters (t, d, u, and o) map directly to short forms of sv
commands (term, down, up, and once) we have already encountered:

t term: Sends the process a TERM signal before restarting the service.



d down: Sends the process a TERM signal followed by a CONT signal and does not restart
it.
u up: Starts a service and restarts it if process exits.
o once: Tries to start a service for up to 7 seconds and does not restart it afterward.
1: Sends the process a USR1 signal.
2: Sends the process a USR2 signal.

Control characters 1 and 2 are of special interest because they correspond to user-defined
signals. It is up to the service on the receiving end to decide how to respond to USR1 and
USR2 signals. If you are the developer tasked with extending a service, you can do that by
implementing signal handlers. Two user-defined signals may not seem like much to work
with, but if you combine these distinct events with updates written to a configuration file(s)
you can achieve a lot. User-defined signals have the added advantage of not needing to stop
or terminate a running process like the STOP, TERM, and KILL signals do.

Summary
This chapter was a deep dive into a lesser-known init system that I feel is largely
underappreciated. Like systemd, BusyBox runit can enforce complex dependencies
between services both during boot and at runtime. It just does it in a much simpler and I
would argue more Unix-like way than systemd does. Plus, nothing beats BusyBox runit
when it comes to boot times. If you are already using Buildroot as your build system, then I
strongly encourage you to consider BusyBox runit for your device's init system.
We covered a lot of ground in our exploration. First, you learned how to get BusyBox
runit onto your device and start it using Buildroot. Then I showed you how you can
assemble and configure services together in different ways using out-of-tree umbrella
packages. Next, we experimented with a live process supervision tree before delving into
service dependencies and ways to express them. After that, I showed you how to add a
dedicated logger and configure log rotation for a service. Lastly, I described how services
can write to existing named pipes as a way to send signals to each other.
In the next chapter, I will turn my attention to the power management of Linux systems
with the aim of showing how to reduce energy consumption. This will be especially useful
if you are designing devices that run on battery power.

Further reading
Here are the various resources mentioned throughout the chapter:

The Buildroot user manual: http://nightly.buildroot.org/manual.html#customize
runit documentation by Gerrit Pape: http://smarden.org/runit/
Void Handbook: https://docs.voidlinux.org/config/services

http://nightly.buildroot.org/manual.html#customize
http://smarden.org/runit/
https://docs.voidlinux.org/config/services


Adopting Erlang by Tristan Sloughter, Fred Hebert, and Evan Vigil-McClanahan:
https://adoptingerlang.org/docs/development/supervision_trees

https://adoptingerlang.org/docs/development/supervision_trees


Chapter 15: Managing Power
For devices operating on battery power, power management is critical: anything we can do
to reduce power usage will increase battery life. Even for devices running on mains power,
reducing power usage has benefits in reducing the need for cooling and energy costs. In this
chapter, I will introduce the four principles of power management:

Don't rush if you don't have to.
Don't be ashamed of being idle.
Turn off things you are not using.
Sleep when there is nothing else to do.

Putting these into more technical terms, the principles mean that the power management
system should endeavor to reduce the CPU clock frequency. During idle periods, it should
choose the deepest sleep state possible; it should reduce the load by powering down unused
peripherals and it should be able to put the whole system into a suspended state while
ensuring power state transitions are quick.
Linux has features that address each of these points. I will describe each one in turn, with
examples and advice on how to apply them to an embedded system in order to make
optimum use of power.
Some of the terminologies of system power management are taken from the Advanced
Configuration and Power Interface (ACPI) specification: terms such as C-states and P-
states. I will describe these as we get to them. The full reference to the specification is
given in the Further reading section.
In this chapter, we will specifically cover the following topics:

Measuring power usage
Scaling the clock frequency
Selecting the best idle state
Powering down peripherals
Putting the system to sleep

Technical requirements
To follow along with the examples, make sure you have the following:

A Linux-based system
Etcher for Linux
A microSD card reader and card



A USB to TTL 3.3V serial cable
A BeagleBone Black
A 5V 1A DC power supply
An Ethernet cable and port for network connectivity

All of the code for this chapter can be found in the Chapter15 folder from the book's
GitHub repository: https://github.com/PacktPublishing/Mastering-Embedded-Linux-
Programming-Third-Edition.

Measuring power usage
For the examples in this chapter, we need to use real hardware rather than virtual. This
means that we need a BeagleBone Black with working power management. Unfortunately,
the BSP for the BeagleBone that comes with the meta-yocto-bsp layer does not include the
necessary firmware for the Power Management IC (PMIC), so we will use 
a pre-built Debian image instead. The missing firmware might exist in the meta-ti layer,
but I did not investigate that. The procedure for installing Debian on the BeagleBone Black
is the same as what we covered in Chapter 12, Prototyping with Breakout Boards, except
for the Debian version.
To download the Debian Stretch IoT microSD card image for the BeagleBone Black, issue
the following command:

$ wget https://debian.beagleboard.org/images/bone-debian-9.9-iot-armhf-
2019-08-03-4gb.img.xz

10.3 (aka Buster) was the latest Debian image for AM335x-based BeagleBones at the time
of writing. We will use Debian 9.9 for the exercises in this chapter because the Linux kernel
included with Debian 10.3 is missing some power management features. When the Debian
Stretch IoT image to a microSD card is done downloading, use Etcher to write it to a
microSD card.

IMPORTANT NOTE
If possible, download version 9.9 (aka Stretch) of Debian rather than the latest Debian
image from BeagleBoard.org for the exercises in this chapter. The CPUIdle driver is
missing from version 10.3 of Debian so the menu and ladder CPUIdle governors are
missing from that version of the distribution. If version 9.9 is no longer available or
supported, then download and try 
a newer version of Debian than 10.3 from BeagleBoard.org.
Now, with no power on the BeagleBone board, insert the microSD card into the reader. Plug
in the serial cable. A serial port should appear on your PC as /dev/ttyUSB0. Start a suitable
terminal program, such as gtkterm, minicom, or picocom, and attach to the port at 115200
bps (bits per second) with no flow control. gtkterm is probably the easiest to set up and
use:

$ gtkterm -p /dev/ttyUSB0 -s 115200

https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


If you get a permissions error, then you may need to add yourself to the dialout group and
reboot to use this port.
Press and hold the Boot Switch button (nearest to the microSD slot) on the BeagleBone
Black, power up the board using the external 5V power connector, and release the button
after about 5 seconds. You should see U-Boot output, kernel log output, and eventually a
login prompt on the serial console:

Debian GNU/Linux 9 beaglebone ttyS0

BeagleBoard.org Debian Image 2019-08-03

Support/FAQ: http://elinux.org/Beagleboard:BeagleBoneBlack_Debian

default username:password is [debian:temppwd]

beaglebone login: debian

Password:

Log in as the debian user. The password is temppwd as shown in the preceding screenshot.

IMPORTANT NOTE
Many BeagleBone Blacks come with Debian already installed on the onboard flash so they
will still boot even without a microSD card inserted. If the BeagleBoard.org Debian
Image 2019-08-03 message is displayed before the password prompt, then the BeagleBone
Black probably booted from the Debian 9.9 image on the microSD. If a different Debian
release message is displayed before the password prompt, then verify whether or not the
microSD card is properly inserted.
To check which version of Debian is running, run the following:

debian@beaglebone:~$ cat /etc/os-release

PRETTY_NAME="Debian GNU/Linux 9 (stretch)"

NAME="Debian GNU/Linux"

VERSION_ID="9"

VERSION="9 (stretch)"

ID=debian

HOME_URL="https://www.debian.org/"

SUPPORT_URL="https://www.debian.org/support"

BUG_REPORT_URL="https://bugs.debian.org/"

Now check whether the power management is working:
debian@beaglebone:~$ cat /sys/power/state

freeze standby mem disk

If you see all four states, everything is working fine. If you see only freeze, the power
management subsystem is not working. Go back and double-check the previous steps.
Now we can move on to measuring power usage. There are two approaches: external and
internal. Measuring power externally, from outside the system, we just need an ammeter to
measure the current and a voltmeter to measure the voltage, and then multiply the two
together to get the wattage. You can use basic meters that give a readout, which you then
note down. Or they can be much more sophisticated and combine data logging so that you
can see the change in power as the load changes millisecond by millisecond. For the



purposes of this chapter, I powered the BeagleBone from the Mini USB port and used 
a cheap USB power monitor of the type that costs a few dollars.
The other approach is to use the monitoring systems that are built into Linux. You will find
that plenty of information is reported to you via sysfs. There is also a very useful program
called PowerTOP, which gathers information together from various sources and presents it
in a single place. PowerTOP is a package for both the Yocto Project and Buildroot. It is also
available for installation on Debian.
To install PowerTop on the BeagleBone Black from Debian Stretch IoT, run the following:

debian@beaglebone:~$ sudo apt update

[…]

debian@beaglebone:~$ sudo apt install powertop

Reading package lists... Done

Building dependency tree       

Reading state information... Done

Suggested packages:

  laptop-mode-tools

The following NEW packages will be installed:

  powertop

0 upgraded, 1 newly installed, 0 to remove and 151 not upgraded.

Need to get 177 kB of archives.

After this operation, 441 kB of additional disk space will be used.

Get:1 http://deb.debian.org/debian stretch/main armhf powertop armhf
2.8-1+b1 [177 kB]

Fetched 177 kB in 0s (526 kB/s)

Don't forget to plug your BeagleBone Black into Ethernet and update the list of available
packages before installing PowerTOP.
Here is an example of PowerTOP running on the BeagleBone Black:



Figure 15.1 – PowerTOP overview

In this screenshot, we can see that the system is quiet, with only 3.5% of CPU usage. 
I will show more interesting examples later, in the Using CPUFreq and The CPUIdle driver
subsections of this chapter.
Now that we have a way to measure power consumption, let's look at one of the biggest
knobs we have to manage power in an embedded Linux system: the clock frequency.

Scaling the clock frequency



Running for a kilometer takes more energy than walking. In a similar way, maybe running
the CPU at a lower frequency can save energy. Let's see.
The power consumption of a CPU when executing code is the sum of a static component,
caused by gate leakage current, among other things, and a dynamic component, caused by
the switching of the gates:
Pcpu = Pstatic + Pdyn
The dynamic power component is dependent on the total capacitance of the logic gates
being switched, the clock frequency, and the square of the voltage:
Pdyn = CfV2
From this, we can see that changing the frequency by itself is not going to save any power
because the same number of CPU cycles have to be completed in order to execute a given
subroutine. If we reduce the frequency by half, it will take twice as long to complete the
calculation, but the total power consumed due to the dynamic power component will be the
same. In fact, reducing the frequency may actually increase the power budget because it
takes longer for the CPU to enter an idle state. So, in these conditions, it is best to use the
highest frequency possible so that the CPU can go back to idle quickly. This is called the
race to idle.

IMPORTANT NOTE
There is another motivation to reduce frequency: thermal management. It may become
necessary to operate at a lower frequency just to keep the temperature of the package
within bounds. But that is not our focus here.
Therefore, if we want to save power, we must be able to change the voltage that the CPU
core operates at. But for any given voltage, there is a maximum frequency beyond which
the switching of the gates becomes unreliable. Higher frequencies need higher voltages, and
so the two need to be adjusted together. Many SoCs implement such a feature: it is called
Dynamic Voltage and Frequency Scaling, or DVFS. Manufacturers calculate optimum
combinations of core frequency and voltage. Each combination is called Operating
Performance Point, or OPP. The ACPI specification refers to them as P-states, with P0
being the OPP with the highest frequency. Although an OPP is a combination of a
frequency and a voltage, it is most often referred to by the frequency component alone.
A kernel driver is needed to switch between P-states. Next, we will look at that driver and
the governors that control it.

The CPUFreq driver
Linux has a component named CPUFreq that manages the transitions between OPPs. It is
part of the board support for the package for each SoC. CPUFreq consists of drivers in
drivers/cpufreq/, which make the transition from one OPP to another, and a set of
governors that implement the policy of when to switch. It is controlled per-CPU via the



/sys/devices/system/cpu/cpuN/cpufreq directory, with N being the CPU number. In
there, we find a number of files, the most interesting of which are as follows:

cpuinfo_cur_freq, cpuinfo_max_freq, and cpuinfo_min_freq: The current
frequency for this CPU, together with the maximum and minimum, measured in KHz.
cpuinfo_transition_latency: The time, in nanoseconds, to switch from one OPP to
another. If the value is unknown, it is set to -1.
scaling_available_frequencies: A list of OPP frequencies available on this CPU.
scaling_available_governors: A list of governors available on this CPU.
scaling_governor: The CPUFreq governor currently being used.
scaling_max_freq and scaling_min_freq: The range of frequencies available to the
governor in KHz.
scaling_setspeed: A file that allows you to manually set the frequency when the
governor is userspace, which I will describe at the end of this subsection.

The governor sets the policy to change the OPP. It can set the frequency between the 
limits of scaling_min_freq and scaling_max_freq. The governors are named 
as follows:

powersave: Always selects the lowest frequency.
performance: Always selects the highest frequency.
ondemand: Changes frequency based on the CPU utilization. If the CPU is idle less
than 20% of the time, it sets the frequency to the maximum; if it is idle more than 30%
of the time, it decrements the frequency by 5%.
conservative: Like ondemand, but switches to higher frequencies in 5% steps rather
than going immediately to the maximum.
userspace: Frequency is set by a user space program.

The default governor when Debian starts up is performance:
$ cd /sys/devices/system/cpu/cpu0/cpufreq

$ cat scaling_governor

performance

To switch to the ondemand governor, which is the governor we should use for the exercises
in this chapter, run the following command:

$ sudo cpupower frequency-set -g ondemand

[sudo] password for debian:

Setting cpu: 0

Enter temppwd when prompted for a password.
The parameters the ondemand governor uses to decide when to change OPP can be viewed
and modified via /sys/devices/system/cpu/cpufreq/ondemand/. Both ondemand and
conservative governors take into account the effort required to change frequency and
voltage. This parameter is in cpuinfo_transition_latency. These calculations are for



threads with a normal scheduling policy; if the thread is being scheduled in real time, they
will both immediately select the highest OPP so that the thread can meet its scheduling
deadline.
The userspace governor allows the logic of selecting the OPP to be performed by a user
space daemon. Examples include cpudyn and powernowd, although both are orientated
toward x86-based laptops rather than embedded devices.
Now that we know where the runtime details about the CPUFreq driver are located, let's
look at how to define the OPPs at compile time.

Using CPUFreq
Looking at the BeagleBone Black, we find that the OPPs are coded in the device tree. Here
is an extract from am33xx.dtsi:

cpu0_opp_table: opp-table {

     compatible = "operating-points-v2-ti-cpu";

     syscon = <&scm_conf>;

     […]

     opp50-300000000 {

           opp-hz = /bits/ 64 <300000000>;

           opp-microvolt = <950000 931000 969000>;

           opp-supported-hw = <0x06 0x0010>;

           opp-suspend;

     };

     […]

     opp100-600000000 {

           opp-hz = /bits/ 64 <600000000>;

           opp-microvolt = <1100000 1078000 1122000>;

           opp-supported-hw = <0x06 0x0040>;

     };

     […]

     opp120-720000000 {

           opp-hz = /bits/ 64 <720000000>;

           opp-microvolt = <1200000 1176000 1224000>;

           opp-supported-hw = <0x06 0x0080>;

     };

     […]

     oppturbo-800000000 {

           opp-hz = /bits/ 64 <800000000>;

           opp-microvolt = <1260000 1234800 1285200>;

           opp-supported-hw = <0x06 0x0100>;

     };

     oppnitro-1000000000 {



           opp-hz = /bits/ 64 <1000000000>;

           opp-microvolt = <1325000 1298500 1351500>;

           opp-supported-hw = <0x04 0x0200>;

     };

};

We can confirm that these are the OPPs in use at runtime by viewing the available
frequencies:

$ cd /sys/devices/system/cpu/cpu0/cpufreq

$ cat scaling_available_frequencies

300000 600000 720000 800000 1000000

By selecting the userspace governor, we can set the frequency by writing to
scaling_setspeed, and so we can measure the power consumed at each OPP. These
measurements are not very accurate, so do not take them too seriously.
First, with an idle system, the result is 70mA @ 4.6V = 320 mW. This is independent of the
frequency, which is what we would expect since this is the static component of the power
consumption of this particular system.
Now, I want to know the maximum power consumed at each OPP by running a compute-
bound load such as this:

# dd if=/dev/urandom of=/dev/null bs=1

The results are shown in the following table, with Delta power being the additional power
usage above the idle system:

These measurements show the maximum power at the various OPPs. But it is not a fair test
because the CPU is running at 100%, and so it is executing more instructions at higher
frequencies. If we keep the load constant but vary the frequency, then we find 
the following:



This shows a definite power saving at the lowest frequency, in the order of 15%.
Using PowerTOP, we can see the percentage of time spent in each OPP. The following
screenshot shows the BeagleBone Black running a light load using the ondemand governor:

Figure 15.2 – PowerTOP Frequency stats

In most cases, the ondemand governor is the best one to use. To select a particular governor,
you can either configure the kernel with a default governor, for example,



CPU_FREQ_DEFAULT_GOV_ONDEMAND, or you can use a boot script to change the governor at
boot time. There is an example System V init script in MELP/Chapter15/cpufrequtils
taken from Debian.
For more information on the CPUFreq driver, take a look at files in the
Documentation/cpu-freq directory of the Linux kernel source tree.
In this section, we were concerned about the power used when the CPU is busy. In the next
section, we will look at how to save power when the CPU is idle.

Selecting the best idle state
When a processor has no more work to do, it executes a halt instruction and enters 
an idle state. While idle, the CPU uses less power. It exits the idle state when an event 
such as a hardware interrupt occurs. Most CPUs have multiple idle states that use 
varying amounts of power. Usually, there is a trade-off between the power usage and the
latency, or the length of time, it takes to exit the state. In the ACPI specification, they are
called C-states.
In the deeper C-states, more circuitry is turned off at the expense of losing some state, and
so it takes longer to return to normal operation. For example, in some C-states the CPU
caches may be powered off, and so when the CPU runs again, it may have to reload some
information from the main memory. This is expensive, and so you only want to do this if
there is a good chance that the CPU will remain in this state for some time. The number of
states varies from one system to another. Each takes some time to recover from sleeping to
being fully active.
The key to selecting the right idle state is to have a good idea of how long the CPU is going
to be quiescent. Predicting the future is always tricky, but there are some things that can
help. One is the current CPU load: if it is high now, it is likely to continue to be so in the
immediate future, so a deep sleep would not be beneficial. Even if the load is low, it is
worth looking to see whether there is a timer event that expires soon. If there is no load and
no timer, then a deeper idle state is justified.
The part of Linux that selects the best idle state is the CPUIdle driver. There is a good deal
of information about it available in the Documentation/cpuidle directory inside the Linux
kernel source tree.

The CPUIdle driver
As with the CPUFreq subsystem, CPUIdle consists of a driver that is part of the BSP and a
governor that determines the policy. Unlike CPUFreq, however, the governor cannot be
changed at runtime and there is no interface for user space governors.
CPUIdle exposes information about each of the idle states in the
/sys/devices/system/cpu/cpu0/cpuidle directory, in which there is a subdirectory for



each of the sleep states, named state0 to stateN. state0 is the lightest sleep and stateN
the deepest. Note that the numbering does not match that of the C-states and that CPUIdle
does not have a state equivalent to C0 (running). For each state, there are these files:

desc: A short description of the state
disable: An option to disable this state by writing 1 to this file
latency: The time the CPU core takes to resume normal operation when exiting this
state, in microseconds
name: The name of this state
power: The power consumed while in this idle state, in milliwatts
time: The total time spent in this idle state, in microseconds
usage: The count of the number of times this state was entered

In the case of the AM335x SoC on the BeagleBone Black, there are two idle states. Here is
the first:

$ cd /sys/devices/system/cpu/cpu0/cpuidle

$ grep "" state0/*

state0/desc:ARM WFI

state0/disable:0

state0/latency:1

state0/name:WFI

state0/power:4294967295

state0/residency:1

state0/time:1023898

state0/usage:1426

This state is named WFI, which refers to the ARM halt instruction, Wait For Interrupt. The
latency is 1 microsecond because it is just a halt instruction, and the power consumed is
given as -1, which means that the power budget is not known (by CPUIdle at least). Now,
this is the second state:

$ cd /sys/devices/system/cpu/cpu0/cpuidle

$ grep "" state1/*

state1/desc:mpu_gate

state1/disable:0

state1/latency:130

state1/name:mpu_gate

state1/power:0

state1/residency:300

state1/time:139156260

state1/usage:7560

This one is named mpu_gate. It has a higher latency of 130 microseconds. The idle states
may be hardcoded into the CPUIdle driver or presented in the device tree. Here is an extract
from am33xx.dtsi:



cpus {

     cpu@0 {

           compatible = "arm,cortex-a8";

           enable-method = "ti,am3352";

           device_type = "cpu";

           reg = <0>;

.

.

.

           cpu-idle-states = <&mpu_gate>;

     };

     idle-states {

           mpu_gate: mpu_gate {

                compatible = "arm,idle-state";

                entry-latency-us = <40>;

                exit-latency-us = <90>;

                min-residency-us = <300>;

                ti,idle-wkup-m3;

           };

      };

}

CPUIdle has two governors:
ladder: This steps idle states down or up, one at a time, depending on the time spent
in the last idle period. It works well with a regular timer tick but not with 
a dynamic tick.
menu: This selects an idle state based on the expected idle time. It works well with
dynamic tick systems.

You should choose one or the other depending on your configuration of NO_HZ, which I will
describe at the end of this section.
Once again, user interaction is via the sysfs filesystem. In the
/sys/devices/system/cpu/cpuidle directory, you will find two files:

current_driver: This is the name of the cpuidle driver.
current_governor_ro: This is the name of the governor.

These show which driver and which governor are being used. The idle states can be shown
in PowerTOP on the Idle stats tab. The following screenshot shows a BeagleBone Black
using the menu governor:



Figure 15.3 – PowerTOP Idle stats

This shows that when the system is idle, it is mostly going to the deeper mpu_gate idle
state, which is what we would want.
Even with the CPU fully idling, most Linux systems are still configured to wake up
periodically on receipt of a system timer interrupt. To save more power, we need to
configure the Linux kernel for tickless operation.

Tickless operation
A related topic is the tickless, or NO_HZ, option. If the system is truly idle, the most likely
source of interruptions will be the system timer, which is programmed to generate 
a regular time tick at a rate of HZ per second, where HZ is typically 100. Historically,
Linux uses the timer tick as the main time base for measuring timeouts.
And yet it is plainly wasteful to wake the CPU up to process a timer interrupt if no timer
events are registered for that particular moment. The dynamic tick kernel configuration
option, CONFIG_NO_HZ_IDLE, looks at the timer queue at the end of the timer processing
routine and schedules the next interruption at the time of the next event, avoiding
unnecessary wake-ups and allowing the CPU to be idle for long periods. In any power-
sensitive application, the kernel should be configured with this option enabled.
While the CPU consumes much of the power in an embedded Linux system, there are other
components of the system that can also be powered down for energy savings.



Powering down peripherals
The discussion up to now has been about CPUs and how to reduce power consumption
when they are running or idling. Now it is time to focus on other parts of the system
peripherals and see whether we can achieve power savings here.
In the Linux kernel, this is managed by the runtime power management system or
runtime pm for short. It works with drivers that support runtime pm, shutting down those
that are not in use and waking them again when they are next needed. It is dynamic and
should be transparent to user space. It is up to the device driver to implement the
management of the hardware, but typically, it would include turning off the clock to the
subsystem, also known as clock gating, and turning off core circuitry where possible.
The runtime power management is exposed via a sysfs interface. Each device has 
a subdirectory named power, in which you will find these files:

control: This allows user space to determine whether runtime pm is used on this
device. If it is set to auto, then runtime pm is enabled, but by setting it to on, the
device is always on and does not use runtime pm.
runtime_enabled: This reports that runtime pm is enabled, disabled, or, if control
is on, it reports forbidden.
runtime_status: This reports the current state of the device. It may be active,
suspended, or unsupported.
autosuspend_delay_ms: This is the time before the device is suspended. -1 means
waiting forever. Some drivers implement this if there is a significant cost to
suspending the device hardware since it prevents rapid suspend/resume cycles.

To give a concrete example, I will look at the MMC driver on the BeagleBone Black:
$ cd
/sys/devices/platform/ocp/481d8000.mmc/mmc_host/mmc1/mmc1:0001/power

$ grep "" *

async:enabled

autosuspend_delay_ms:3000

control:auto

runtime_active_kids:0

runtime_active_time:14464

runtime_enabled:enabled

runtime_status:suspended

runtime_suspended_time:121208

runtime_usage:0

So, runtime pm is enabled, the device is currently suspended, and there is a delay of 3000
milliseconds after it was last used before it will be suspended again. Now I read a block
from the device and see whether it has changed:

$ sudo dd if=/dev/mmcblk1p3 of=/dev/null count=1

1+0 records in



1+0 records out

512 bytes copied, 0.00629126 s, 81.4 kB/s

$ grep "" *

async:enabled

autosuspend_delay_ms:3000

control:auto

runtime_active_kids:0

runtime_active_time:17120

runtime_enabled:enabled

runtime_status:active

runtime_suspended_time:178520

runtime_usage:0

Now the MMC driver is active and the power to the board has increased from 320 mW to
500 mW. If I repeat it again after 3 seconds, it is once more suspended, and the power has
returned to 320 mW.
For more information on runtime pm, look in the Linux kernel source code at
Documentation/power/runtime_pm.txt.
Now that we know what the runtime pm is and what it does, let's see it in action.

Putting the system to sleep
There is one more power management technique to consider: putting the whole system into
sleep mode with the expectation that it will not be used again for a while. In the Linux
kernel, this is known as system sleep. It is usually user-initiated: the user decides that the
device should be shut down for a while. For example, I shut the lid of my laptop and put it
in my bag when it is time to go home. Much of the support for system sleep in Linux comes
from the support for laptops. In the laptop world, there are usually two options:

Suspend
Hibernate

The first, also known as suspend to RAM, shuts everything down except the system
memory, so the machine is still consuming a little power. When the system wakes up, the
memory retains all the previous state, and my laptop is operational within a few seconds.
If I select the hibernate option, the contents of the memory are saved to the hard drive. The
system consumes no power at all, and so it can stay in this state indefinitely, but on wake-
up, it takes some time to restore the memory from disk. Hibernate is very seldom used in
embedded systems, mostly because the flash storage tends to be quite slow on read/write,
but also because it is intrusive to the flow of work.
For more information, look at the kernel source code in the Documentation/power
directory.



The suspend-to-RAM and hibernate options map to two of the four sleep states supported
by Linux. We'll look at these two types of system sleep and the rest of the ACPI power
states next.

Power states
In the ACPI specification, the sleep states are called S-states. Linux supports four sleep
states (freeze, standby, mem, and disk), which are shown in the following list along with
the corresponding ACPI S-state ([S0], S1, S3, S4):

freeze ([S0]): Stops (freezes) all activity in user space, but otherwise the CPU and
memory are operating as normal.

The power-saving results from the fact that no user space code is being run.
ACPI does not have an equivalent state so S0 is the closest match. S0 is the
state for 
a running system.

standby (S1): Just like freeze, but additionally takes all CPUs offline except the boot
CPU.
mem (S3): Powers down the system and puts the memory in the self-refresh mode. Also
known as suspend to RAM.
disk (S4): Saves the memory to the hard disk and powers down. Also known as
suspend to disk.

Not all systems have support for all states. To find out which are available, read the
/sys/power/state file as shown:

# cat /sys/power/state

freeze standby mem disk

To enter one of the system sleep states, you just write the desired state to
/sys/power/state.
For embedded devices, the most common need is to suspend to RAM using the mem option.
For example, I can suspend the BeagleBone Black like this:

# echo mem > /sys/power/state

[ 1646.158274] PM: Syncing filesystems ...done.

[ 1646.178387] Freezing user space processes ... (elapsed 0.001 seconds)
done.

[ 1646.188098] Freezing remaining freezable tasks ... (elapsed 0.001
seconds) done.

[ 1646.197017] Suspending console(s) (use no_console_suspend to debug)

[ 1646.338657] PM: suspend of devices complete after 134.322 msecs

[ 1646.343428] PM: late suspend of devices complete after 4.716 msecs

[ 1646.348234] PM: noirq suspend of devices complete after 4.755 msecs

[ 1646.348251] Disabling non-boot CPUs ...



[ 1646.348264] PM: Successfully put all powerdomains to target state

The device powers down in less than a second and then power usage drops down to below
10 milliwatts, which is the limit of measurement of my simple multimeter. But how do I
wake it up again? That is the next topic.

Wakeup events
Before you suspend a device, you must have a method of waking it again. The kernel tries
to help you here: if there is not at least one wakeup source, the system will refuse to
suspend with the following message:

No sources enabled to wake-up! Sleep abort.

Of course, this means that some parts of the system have to remain powered on even during
the deepest sleep. This usually involves the Power Management IC (PMIC), the real-
time clock (RTC), and may additionally include interfaces such as GPIO, UART, 
and Ethernet.
Wakeup events are controlled through sysfs. Each device in /sys/device has a
subdirectory named power containing a wakeup file that will contain one of these strings:

enabled: This device will generate wakeup events.
disabled: This device will not generate wakeup events.
(empty): This device is not capable of generating wakeup events.

To get a list of devices that can generate wakeups, we can search for all devices where
wakeup contains either enabled or disabled:

$ find /sys/devices/ -name wakeup | xargs grep "abled"

In the case of the BeagleBone Black, the UARTs are wakeup sources, so pressing a key on
the console wakes the BeagleBone:

[ 1646.348264] PM: Wakeup source UART

[ 1646.368482] PM: noirq resume of devices complete after 19.963 msecs

[ 1646.372482] PM: early resume of devices complete after 3.192 msecs

[ 1646.795109] net eth0: initializing cpsw version 1.12 (0)

[ 1646.798229] net eth0: phy found : id is : 0x7c0f1

[ 1646.798447] libphy: PHY 4a101000.mdio:01 not found

[ 1646.798469] net eth0: phy 4a101000.mdio:01 not found on slave 1

[ 1646.927874] PM: resume of devices complete after 555.337 msecs

[ 1647.003829] Restarting tasks ... done.

We've seen how to put a device to sleep then wake it up with an event from a peripheral
interface like a UART. What if we want a device to wake itself up without any outside
interaction? This is where the RTC comes into play.



Timed wakeups from the real-time clock
Most systems have an RTC that can generate alarm interruptions up to 24 hours in the
future. If so, the /sys/class/rtc/rtc0 directory will exist. It should contain the wakealarm
file. Writing a number to wakealarm will cause it to generate an alarm that number of
seconds later. If you also enable wakeup events from rtc, the RTC will resume a suspended
device.
For example, this rtcwake command would put the system in standby with the RTC
waking it up after 5 seconds:

$ sudo su –

# rtcwake -d /dev/rtc0 -m standby -s 5

  rtcwake: assuming RTC uses UTC ...

  rtcwake: wakeup from "standby" using /dev/rtc0 at Tue Dec  1 19:34:10
2020

[  187.345129] PM: suspend entry (shallow)

[  187.345148] PM: Syncing filesystems ... done.

[  187.346754] Freezing user space processes ... (elapsed 0.003 seconds)
done.

[  187.350688] OOM killer disabled.

[  187.350789] Freezing remaining freezable tasks ... (elapsed 0.001
seconds) done.

[  187.352361] Suspending console(s) (use no_console_suspend to debug)

[  187.500906] Disabling non-boot CPUs ...

[  187.500941] pm33xx pm33xx: PM: Successfully put all powerdomains to
target state

[  187.500941] PM: Wakeup source RTC Alarm

[  187.529729] net eth0: initializing cpsw version 1.12 (0)

[  187.605061] SMSC LAN8710/LAN8720 4a101000.mdio:00: attached PHY
driver [SMSC LAN8710/LAN8720] (mii_bus:phy_addr=4a101000.mdio:00,
irq=POLL)

[  187.731543] OOM killer enabled.

[  187.731563] Restarting tasks ... done.

[  187.756896] PM: suspend exit

Since the UARTs are also a wakeup source, pressing a key on the console will wake up the
BeagleBone Black before the RTC wakealarm expires:

[  255.698873] PM: suspend entry (shallow)

[  255.698894] PM: Syncing filesystems ... done.

[  255.701946] Freezing user space processes ... (elapsed 0.003 seconds)
done.

[  255.705249] OOM killer disabled.

[  255.705256] Freezing remaining freezable tasks ... (elapsed 0.002
seconds) done.

[  255.707827] Suspending console(s) (use no_console_suspend to debug)

[  255.860823] Disabling non-boot CPUs ...



[  255.860857] pm33xx pm33xx: PM: Successfully put all powerdomains to
target state

[  255.860857] PM: Wakeup source UART

[  255.888064] net eth0: initializing cpsw version 1.12 (0)

[  255.965045] SMSC LAN8710/LAN8720 4a101000.mdio:00: attached PHY
driver [SMSC LAN8710/LAN8720] (mii_bus:phy_addr=4a101000.mdio:00,
irq=POLL)

[  256.093684] OOM killer enabled.

[  256.093704] Restarting tasks ... done.

[  256.118453] PM: suspend exit

The Power button on the BeagleBone Black is also a wakeup source so you can use that to
resume from standby in the absence of a serial console. Make sure to press the Power
button and not the Reset button, which is next to it, otherwise the board will reboot.
This concludes our coverage of the four Linux system sleep modes. We learned how to
suspend a device to the mem or standby power states then wake it up via an event from a
UART, RTC, or the Power button. While the runtime pm in Linux was created mostly for
laptops, we can leverage this support for embedded systems that also run on battery power.

Summary
Linux has sophisticated power management functions. I have described four 
main components:

CPUFreq changes the OPP of each processor core to reduce power on those that are
busy but have some bandwidth to spare, and so allow the opportunity to scale the
frequency back. OPPs are known as P-States in the ACPI specification.
CPUIdle selects deeper idle states when the CPU is not expected to be woken up for a
while. Idle states are known as C-States in the ACPI specification.
Runtime pm will shut down peripherals that are not needed.
System sleep modes will put the whole system into a low power state. They are
usually under end user control, for example, by pressing a standby button. System
sleep states are known as S-States in the ACPI specification.

Most of the power management is done for you by the BSP. Your main task is to make sure
that it is configured correctly for your intended use cases. Only the last component,
selecting a system sleep state, requires you to write some code that will allow the end user
to enter and exit the state.
The next section of the book is about writing embedded applications. We will start 
with packaging and deploying Python code and dig deeper into the containerization
techniques that were introduced in Chapter 10, Updating Software in the Field, when we
evaluated balena.



Further reading
 

Advanced Configuration and Power Interface Specification, UEFI Forum, 
Inc.: https://uefi.org/sites/default/files/resources/ACPI_Spec_6_4_Jan22.pdf

https://uefi.org/sites/default/files/resources/ACPI_Spec_6_4_Jan22.pdf


Section 3: 
Writing Embedded Applications
Section 3 shows the reader how to use the embedded Linux platform to create a working
device for their applicationw. The section starts with a survey of various Python packaging
and deployment options to assist with the iterative development of your application. We
then learn how to make effective use of the Linux process and threads model and how to
manage memory in a resource-constrained device.
This part of the book comprises the following chapters:

Chapter 16, Packaging Python
Chapter 17, Learning About Processes and Threads
Chapter 18, Managing Memory



Chapter 16: Packaging Python
Python is the most popular programming language for machine learning. Combine that
with the proliferation of machine learning in our day-to-day lives and it is no surprise that
the desire to run Python on edge devices is intensifying. Even in this era of transpilers and
WebAssembly, packaging Python applications for deployment remains an unsolved
problem. In this chapter, you will learn what choices are out there for bundling Python
modules together and when to use one method over another.
We start with a look back at the origins of today's Python packaging solutions, from the
built-in standard distutils to its successor, setuptools. Next, we examine the pip
package manager, before moving on to venv for Python virtual environments, followed by
conda, the reigning general-purpose cross-platform solution. Lastly, I will show you how to
use Docker to bundle Python applications along with their user space environment for rapid
deployment to the cloud.
Since Python is an interpreted language, you cannot compile a program into a standalone
executable like you can with a language such as Go. This makes deploying Python
applications complicated. Running a Python application requires installing a Python
interpreter and several runtime dependencies. These requirements need to be code-
compatible for the application to work. That requires the precise versioning of software
components. Solving these deployment problems is what Python packaging is all about.
In this chapter, we will cover the following main topics:

Retracing the origins of Python packaging
Installing Python packages with pip
Managing Python virtual environments with venv
Installing precompiled binaries with conda
Deploying Python applications with Docker

Technical requirements
To follow along with the examples, make sure you have the following packages installed on
your Linux-based host system:

Python: Python 3 interpreter and standard library
pip: Package installer for Python 3
venv: Python module for creating and managing lightweight virtual environments
Miniconda: Minimal installer for the conda package and virtual environment manager
Docker: Tool for building, deploying, and running software inside containers



I recommend using Ubuntu 20.04 LTS or later for this chapter. Even though Ubuntu 20.04
LTS runs on the Raspberry Pi 4, I still prefer to develop on an x86-64 desktop PC or laptop.
I choose Ubuntu for my development environment because the distribution maintainers
keep Docker up to date. Ubuntu 20.04 LTS also comes with Python 3 and pip already
installed since Python is used extensively throughout the system. Do not uninstall python3
or you will render Ubuntu unusable. To install venv on Ubuntu, enter the following:

$ sudo apt install python3-venv

IMPORTANT NOTE
Do not install Miniconda until you get to the section on conda because it interferes with the
earlier pip exercises that rely on the system Python installation.
Now, let's install Docker.

Getting Docker
To install Docker on Ubuntu 20.04 LTS, we need to do the following:

1. Update the package repositories:
$ sudo apt update

2. Install Docker:
$ sudo apt install docker.io

3. Start the Docker daemon and enable it to start at boot time:
$ sudo systemctl enable --now docker

4. Add yourself to the docker group:
$ sudo usermod -aG docker <username>

Replace <username> in that last step with your username. I recommend creating your own
Ubuntu user account rather than using the default ubuntu user account, which is supposed
to be reserved for administrative tasks.

Retracing the origins of Python packaging
The Python packaging landscape is a vast graveyard of failed attempts and abandoned tools.
Best practices around dependency management change often within the Python community
and the recommended solution one year may be a broken nonstarter the next. As you
research this topic, remember to look at when the information was published and do not
trust any advice that may be out of date.
Most Python libraries are distributed using distutils or setuptools, including all the
packages found on the Python Package Index (PyPI). Both distribution methods rely on a
setup.py project specification file that the package installer for Python (pip) uses to
install a package. pip can also generate or freeze a precise list of dependencies after 



a project is installed. This optional requirements.txt file is used by pip in conjunction
with setup.py to ensure that project installations are repeatable.

distutils
distutils is the original packaging system for Python. It has been included in the Python
standard library since Python 2.0. distutils provides a Python package of the same name
that can be imported by your setup.py script. Even though distutils still ships with
Python, it lacks some essential features, so direct usage of distutils is now actively
discouraged. setuptools has become its preferred replacement.
While distutils may continue to work for simple projects, the community has moved on.
Today, distutils survives mostly for legacy reasons. Many Python libraries were first
published back when distutils was the only game in town. Porting them to setuptools
now would take considerable effort and could break existing users.

setuptools
setuptools extends distutils by adding support for complex constructs that make larger
applications easier to distribute. It has become the de facto packaging system within the
Python community. Like distutils, setuptools offers a Python package of the same
name that you can import into your setup.py script. distribute was an ambitious fork of
setuptools that eventually merged back into setuptools 0.7, cementing the status of
setuptools as the definitive choice for Python packaging.
setuptools introduced a command-line utility known as easy_install (now deprecated)
and a Python package called pkg_resources for runtime package discovery and access to
resource files. setuptools can also produce packages that act as plugins for other
extensible packages (for example, frameworks and applications). You do this by registering
entry points in your setup.py script for the other overarching package to import.
The term distribution means something different in the context of Python. A distribution is
a versioned archive of packages, modules, and other resource files used to distribute a
release. A release is a versioned snapshot of a Python project taken at a given point in time.
To make matters worse, the terms package and distribution are overloaded and often used
interchangeably by Pythonistas. For our purposes, let's say that a distribution is what you
download, and a package is the module[s] that gets installed and imported.
Cutting a release can result in multiple distributions, such as a source distribution and one
or more built distributions. There can be different built distributions for different platforms,
such as one that includes a Windows installer. The term built distribution means that no
build step is required before installation. It does not necessarily mean precompiled. Some
built distribution formats such as Wheel (.whl) exclude compiled Python files, for
example. A built distribution containing compiled extensions is known as a binary
distribution.



An extension module is a Python module that is written in C or C++. Every extension
module compiles down to a single dynamically loaded library, such as a shared object (.so)
on Linux and a DLL (.pyd) on Windows. Contrast this with pure modules, which must be
written entirely in Python. The Egg (.egg) built distribution format introduced by
setuptools supports both pure and extension modules. Since a Python source code (.py)
file compiles down to a bytecode (.pyc) file when the Python interpreter imports a module
at runtime, you can see how a built distribution format such as Wheel might exclude
precompiled Python files.

setup.py
Say you are developing a small program in Python, maybe something that queries 
a remote REST API and saves response data to a local SQL database. How do you package
your program together with its dependencies for deployment? You start by defining a
setup.py script that setuptools can use to install your program. Deploying with
setuptools is the first step toward more elaborate automated deployment schemes.
Even if your program is small enough to fit comfortably inside a single module, chances are
it won't stay that way for long. Let's say that your program consists of a single file named
follower.py, like so:

$ tree follower

follower

└── follower.py

You could then convert this module into a package by splitting follower.py up into three
separate modules and placing them inside a nested directory also named follower:

$ tree follower/

follower/

└── follower

    ├── fetch.py

    ├── __main__.py

    └── store.py

The __main__.py module is where your program starts, so it contains mostly top-level,
user-facing functionality. The fetch.py module contains functions for sending HTTP
requests to the remote REST API and the store.py module contains functions for saving
response data to the local SQL database. To run this package as a script, you need to pass
the -m option to the Python interpreter as follows:

$ PYTHONPATH=follower python -m follower

The PYTHONPATH environment variable points to the directory where a target project's
package directories are located. The follower argument after the -m option tells Python to
run the __main__.py module belonging to the follower package. Nesting package
directories inside a project directory like this paves the way for your program to grow into a
larger application made up of multiple packages each with its own namespace.



With the pieces of your project all in their right place, we are now ready to create 
a minimal setup.py script that setuptools can use to package and deploy it:

from setuptools import setup

setup(

    name='follower',

    version='0.1',

    packages=['follower'],

    include_package_data=True,

    install_requires=['requests', 'sqlalchemy']

)

The install_requires argument is a list of external dependencies that need to be installed
automatically for a project to work at runtime. Notice that I did not specify what versions of
these dependencies are needed or where to fetch them from in my example. I only asked for
libraries that look and act like requests and sqlalchemy. Separating policy from
implementation like this allows you to easily swap out the official PyPI version of a
dependency with your own in case you need to fix a bug or add a feature. Adding optional
version specifiers to your dependency declarations is fine, but hardcoding distribution
URLs within setup.py as dependency_links is wrong in principle.
The packages argument tells setuptools what in-tree packages to distribute with a project
release. Since every package is defined inside its own subdirectory of the parent project
directory, the only package being shipped in this case is follower. I am including data files
along with my Python code in this distribution. To do that, you need to set the
include_package_data argument to True so that setuptools looks for a MANIFEST.in file
and installs all the files listed there. Here are the contents of the MANIFEST.in file:

include data/events.db

If the data directory contained nested directories of data we wanted to include, we could
glob all of them along with their contents using recursive-include:

recursive-include data *

Here is the final directory layout:
$ tree follower

follower

├── data

│   └── events.db

├── follower

│   ├── fetch.py

│   ├── __init__.py

│   └── store.py

├── MANIFEST.in

└── setup.py

setuptools excels at building and distributing Python packages that depend on other
packages. It is able to do this thanks to features such as entry points and dependency
declarations, which are simply absent from distutils. setuptools works well with pip
and new releases of setuptools arrive on a regular basis. The Wheel build distribution



format was created to replace the Egg format that setuptools originated. That effort has
largely succeeded with the addition of a popular setuptools extension for building wheels
and pip's great support for installing wheels.

Installing Python packages with pip
You now know how to define your project's dependencies in a setup.py script. But how do
you install those dependencies? How do you upgrade a dependency or replace it when you
find a better one? How do you decide when it is safe to delete a dependency you no longer
need? Managing project dependencies is a tricky business. Luckily, Python comes with a
tool called pip that can help, especially in the early stages of your project.
The initial 1.0 release of pip arrived on April 4, 2011, around the same time that 
Node.js and npm were taking off. Before it became pip, the tool was named pyinstall.
pyinstall was created in 2008 as an alternative to easy_install, which came bundled
with setuptools at the time. easy_install is now deprecated and setuptools

recommends using pip instead.
Since pip is included with the Python installer and you can have multiple versions of
Python installed on your system (for example, 2.7 and 3.8), it helps to know which version
of pip you are running:

$ pip --version

If no pip executable is found on your system, that probably means you are on Ubuntu 20.04
LTS or later and do not have Python 2.7 installed. That is fine. We will merely substitute
pip3 for pip and python3 for python throughout the rest of this section:

$ pip3 --version

If there is python3 but no pip3 executable, then install it as shown on Debian-based
distributions such as Ubuntu:

$ sudo apt install python3-pip

pip installs packages to a directory called site-packages. To find the location of your
site-packages directory, run the following command:

$ python3 -m site | grep ^USER_SITE

IMPORTANT NOTE
Note that the pip3 and python3 commands shown from here on out are only required for
Ubuntu 20.04 LTS or later, which no longer comes with Python 2.7 installed. Most Linux
distributions still come with pip and python executables, so use the pip and python
commands if that is what your Linux system already provides.
To get a list of packages already installed on your system, use this command:

$ pip3 list

The list shows that pip is just another Python package, so you could use pip to upgrade
itself, but I would advise you not to do that, at least not in the long term. I'll explain why in
the next section when I introduce virtual environments.



To get a list of packages installed in your site-packages directory, use the following:
$ pip3 list --user

This list should be empty or much shorter than the list of system packages.
Go back to the example project from the last section. cd into the parent follower directory
where setup.py is located. Then run the following command:

$ pip3 install --ignore-installed --user .

pip will use setup.py to fetch and install the packages declared by install_requires to
your site-packages directory. The --user option instructs pip to install packages to your
site-packages directory rather than globally. The --ignore-installed option forces pip
to re-install any required packages already present on the system to site-packages so that
no dependencies go missing. Now list all the packages in your site-packages directory
again:

$ pip3 list --user

Package    Version  

---------- ---------

certifi    2020.6.20

chardet    3.0.4    

follower   0.1      

idna       2.10     

requests   2.24.0   

SQLAlchemy 1.3.18   

urllib3    1.25.10

This time, you should see that both requests and SQLAlchemy are in the package list.
To view details on the SQLAlchemy package you likely just installed, issue the following:

$ pip3 show sqlalchemy

The details shown contain the Requires and Required-by fields. Both are lists of related
packages. You could use the values in these fields and successive calls to pip show to trace
the dependency tree of your project. But it's probably easier to pip install a command-
line tool called pipdeptree and use that instead.
When a Required-by field becomes empty, that is a good indicator that it is now safe to
uninstall a package from your system. If no other packages depend on the packages in the
deleted package's Requires field, then it's safe to uninstall those as well. Here is how you
uninstall sqlalchemy using pip:

$ pip3 uninstall sqlalchemy -y

The trailing -y suppresses the confirmation prompt. To uninstall more than one package at a
time, simply add more package names before the -y. The --user option is omitted here
because pip is smart enough to uninstall from site-packages first when 
a package is also installed globally.
Sometimes you need a package that serves some purpose or utilizes a particular technology,
but you don't know the name of it. You can use pip to perform a keyword search against
PyPI from the command line but that approach often yields too many results. It is much



easier to search for packages on the PyPI website (https://pypi.org/search/), which allows
you to filter results by various classifiers.

requirements.txt
pip install will install the latest published version of a package, but often you 
want to install a specific version of a package that you know works with your project's
code. Eventually, you will want to upgrade your project's dependencies. But before 
I show you how to do that, I first need to show you how to use pip freeze to fix 
your dependencies.
Requirements files allow you to specify exactly which packages and versions pip should
install for your project. By convention, project requirements files are always named
requirements.txt. The contents of a requirements file are just a list of pip install
arguments enumerating your project's dependencies. These dependencies are precisely
versioned so that there are no surprises when someone attempts to rebuild and deploy your
project. It is good practice to add a requirements.txt file to your project's repo in order to
ensure reproducible builds.
Returning to our follower project, now that we have installed all our dependencies and
verified that the code works as expected, we are now ready to freeze the latest versions of
the packages that pip installed for us. pip has a freeze command that outputs the installed
packages along with their versions. You redirect the output from this command to a
requirements.txt file:

$ pip3 freeze --user > requirements.txt

Now that you have a requirements.txt file, people who clone your project can install all
its dependencies using the -r option and the name of the requirements file:

$ pip3 install --user -r requirements.txt

The autogenerated requirements file format defaults to exact version matching (==). For
example, a line such as requests==2.22.0 tells pip that the version of requests to install
must be exactly 2.22.0. There are other version specifiers you can utilize in a requirements
file, such as minimum version (>=), version exclusion (!=), and maximum version (<=).
Minimum version (>=) matches any version greater than or equal to the right-hand side.
Version exclusion (!=) matches any version except the right-hand side. Maximum version
matches any version less than or equal to the right-hand side.
You can combine multiple version specifiers in a single line using commas to 
separate them:

requests >=2.22.0,<3.0

The default behavior when pip installs the packages specified in a requirements file is to
fetch them all from PyPI. You can override PyPI's URL (https://pypi.org/simple/) with that
of an alternate Python package index by adding a line such as the following to the top of
your requirements.txt file:

--index-url http://pypi.mydomain.com/mirror

https://pypi.org/search/
https://pypi.org/simple/


The effort required to stand up and maintain your own private PyPI mirror is not
insubstantial. When all you need to do is fix a bug or add a feature to a project dependency,
it makes more sense to override the package source instead of the entire package index.

TIP
Version 4.3 of the Jetpack SDK for the NVIDIA Jetson Nano is based on Ubuntu's 18.04
LTS distribution. The Jetpack SDK adds extensive software support for the Nano's NVIDIA
Maxwell 128 CUDA cores, such as GPU drivers and other runtime components. You can
use pip to install a 
GPU-accelerated wheel for TensorFlow from NVIDIA's package index:
$ pip install --user --extra-index-url

https://developer.download.nvidia.com/compute/redist/jp/v43 tensorflow-
gpu==2.0.0+nv20.1

I mentioned earlier how hardcoding distribution URLs inside setup.py is wrong. 
You can use the -e argument form in a requirements file to override individual 
package sources:

-e git+https://github.com/myteam/flask.git#egg=flask

In this example, I am instructing pip to fetch the flask package sources from my team's
GitHub fork of pallets/flask.git. The -e argument form also takes a Git branch name,
commit hash, or tag name:

-e git+https://github.com/myteam/flask.git@master

-e
git+https://github.com/myteam/flask.git@5142930ef57e2f0ada00248bdaeb9540
6d18eb7c

-e git+https://github.com/myteam/flask.git@v1.0

Using pip to upgrade a project's dependencies to the latest versions published on PyPI is
fairly straightforward:

$ pip3 install --upgrade –user -r requirements.txt

After you have verified installing with pip:requirements.txt that the latest versions of
your dependencies do not break your project, you can then write them back out to the
requirements file:

$ pip3 freeze --user > requirements.txt

Make sure that freezing did not overwrite any of the overrides or special version 
handling in your requirements file. Undo any mistakes and commit the updated
requirements.txt file to version control.
At some point, upgrading your project dependencies will result in your code breaking. A
new package release may introduce a regression or incompatibility with your project. The
requirements file format provides syntax to deal with these situations. Let's say you have
been using version 2.22.0 of requests in your project and version 3.0 is released.
According to the practice of semantic versioning, incrementing the major version number
indicates that version 3.0 of requests includes breaking changes to that library's API. You
can express the new version requirements like this:

requests ~= 2.22.0

https://developer.download.nvidia.com/compute/redist/jp/v43


The compatible release specifier (~=) relies on semantic versioning. Compatible means
greater than or equal to the right-hand side and less than the next version major number (for
example, >= 1.1 and == 1.*). You have already seen me express these same version
requirements for requests less ambiguously as follows:

requests >=2.22.0,<3.0

These pip dependency management techniques work fine if you only develop a single
Python project at a time. But chances are you use the same machine to work on several
Python projects at once, each potentially requiring a different version of the Python
interpreter. The biggest problem with using only pip for multiple projects is that it installs
all packages to the same user site-packages directory for a particular version of Python.
This makes it very hard to isolate dependencies from one project to the next.
As we'll soon see, pip combines well with Docker for deploying Python applications. You
can add pip to a Buildroot- or Yocto-based Linux image but that only enables quick
onboard experimentation. A Python runtime package installer such as pip is ill-suited for
Buildroot and Yocto environments where you want to define the entire contents of your
embedded Linux image at build time. pip works great inside containerized environments
such as Docker where the line between build time and runtime is often blurry.
In Chapter 7, Developing with Yocto, you learned about the Python modules available to
you in the meta-python layer and how to define a custom layer for your own application.
You can use the requirements.txt files generated by pip freeze to inform the selection
of dependencies from meta-python for your own layer recipes. Buildroot and Yocto both
install Python packages in a system-wide manner, so the virtual environment techniques we
are going to discuss next do not apply to embedded Linux builds. They do, however, make
it easier to generate accurate requirements.txt files.

Managing Python virtual environments 
with venv
A virtual environment is a self-contained directory tree containing a Python interpreter for
a particular version of Python, a pip executable for managing project dependencies, and a
local site-packages directory. Switching between virtual environments tricks the shell into
thinking that the only Python and pip executables available are the ones present in the
active virtual environment. Best practice dictates that you create a different virtual
environment for each of your projects. This form of isolation solves the problem of two
projects depending on different versions of the same package.
Virtual environments are not new to Python. The system-wide nature of Python installations
necessitates them. Besides enabling you to install different versions of the same package,
virtual environments also provide an easy way for you to run multiple versions of the
Python interpreter. Several options exist for managing Python virtual environments. A tool
that was immensely popular only 2 years ago (pipenv) has since languished by the time of



writing. Meanwhile, a new contender has arisen (poetry) and Python 3's built-in support
for virtual environments (venv) is starting to see more adoption.
Venv has been shipping with Python since version 3.3 (released in 2012). Because it only
comes bundled with Python 3 installations, venv is incompatible with projects that require
Python 2.7. Now that support for Python 2.7 officially ended on January 1, 2020, this
Python 3 limitation is less of a concern. Venv is based on the popular virtualenv tool,
which is still maintained and available on PyPI. If you have one or more projects that still
require Python 2.7 for one reason or another, then you can use virtualenv instead of venv
to work on those.
By default, venv installs the most recent version of Python found on your system. If you
have multiple versions of Python on your system, you can select a specific Python version
by running python3 or whichever version you want when creating each virtual environment
(The Python Tutorial, https://docs.python.org/3/tutorial/venv.html). Developing with the
most recent version of Python is usually fine for greenfield projects but unacceptable for
most legacy and enterprise software. We will use the version of Python 3 that came with
your Ubuntu system to create and work with 
a virtual environment.
To create a virtual environment, first decide where you want to put it, and then run the venv
module as a script with the target directory path:

1. Ensure venv is installed on your Ubuntu system:
$ sudo apt install python3-venv

2. Create a new directory for your project:
$ mkdir myproject

3. Switch to that new directory:
$ cd myproject

4. Create the virtual environment inside a subdirectory named venv:
$ python3 -m venv ./venv

Now that you have created a virtual environment, here is how you activate and verify it:
1. Switch to your project directory if you haven't already:

$ cd myproject

2. Check where your system's pip3 executable is installed:
$ which pip3

/usr/bin/pip3

3. Activate the project's virtual environment:
$ source ./venv/bin/activate

4. Check where your project's pip3 executable is installed:
(venv) $ which pip3

/home/frank/myproject/venv/bin/pip3

5. List the packages that came installed with the virtual environment:

https://docs.python.org/3/tutorial/venv.html


(venv) $ pip3 list

Package       Version

------------- -------

pip           20.0.2

pkg-resources 0.0.0  

setuptools    44.0.0

If you enter the which pip command from within your virtual environment, you will see
that pip now points to the same executable as pip3. Prior to activating the virtual
environment, pip probably did not point to anything because Ubuntu 20.04 LTS no longer
comes with Python 2.7 installed. The same can be said for python versus python3. You can
now omit the 3 when running either pip or python from within your virtual environment.
Next, let's install a property-based testing library named hypothesis into our existing
virtual environment:

1. Switch to your project directory if you haven't already:
$ cd myproject

2. Reactivate the project's virtual environment if it is not already active:
$ source ./venv/bin/activate

3. Install the hypothesis package:
(venv) $ pip install hypothesis

4. List the packages now installed inside the virtual environment:
(venv) $ pip list

Package          Version

---------------- -------

attrs            19.3.0

hypothesis       5.16.1

pip              20.0.2

pkg-resources    0.0.0  

setuptools       44.0.0

sortedcontainers 2.2.2

Notice that two new packages were added to the list besides hypothesis, attrs and
sortedcontainers. hypothesis depends on these two packages. Let's say you had another
Python project that depended on version 18.2.0 instead of version 19.3.0 of
sortedcontainers. Those two versions would be incompatible and thus conflict with each
other. Virtual environments allow you to install both versions of the same package, 
a different version for each of the two projects.
You may have noticed that switching out of a project directory does not deactivate its
virtual environment. Don't worry. Deactivating a virtual environment is as easy as this:

(venv) $ deactivate

$



This puts you back in the global system environment where you have to enter python3 and
pip3 again. You have now seen everything you need to know to get started with Python
virtual environments. Creating and switching between virtual environments is common
practice now when developing in Python. Isolated environments make it easier to keep
track of and manage your dependencies across multiple projects. Deploying Python virtual
environments to embedded Linux devices for production makes less 
sense, but can still be done using a Debian packaging tool called dh-virtualenv
(https://github.com/spotify/dh-virtualenv).

Installing precompiled binaries with conda
conda is a package and virtual environment management system used by the Anaconda
distribution of software for the PyData community. The Anaconda distribution includes
Python as well as binaries for several hard-to-build open source projects such as PyTorch
and TensorFlow. conda can be installed without the full Anaconda distribution, which is
very large, or the minimal Miniconda distribution, which is still over 256 MB.
Even though it was created for Python shortly after pip, conda has evolved into 
a general-purpose package manager like APT or Homebrew. Now, it can be used to package
and distribute software for any language. Because conda downloads precompiled binaries,
installing Python extension modules is a breeze. Another one of conda's 
big selling points is that it is cross-platform, with full support for Linux, macOS, 
and Windows.
Besides package management, conda is also a full-blown virtual environment manager.
Conda virtual environments have all the benefits we have come to expect from Python venv
environments and more. Like venv, conda lets you use pip to install packages from PyPI
into a project's local site-packages directory. If you prefer, you can use conda's own
package management capabilities to install packages from different channels. Channels are
package feeds provided by Anaconda and other software distributions.

Environment management
Unlike venv, conda's virtual environment manager can easily juggle multiple versions of
Python, including Python 2.7. You will need to have Miniconda installed on your Ubuntu
system to do the following exercises. You want to use Miniconda instead of Anaconda for
your virtual environments because Anaconda environments come with lots of preinstalled
packages, many of which you will never need. Miniconda environments are stripped down
and allow you to easily install any of Anaconda's packages should you have to.
To install and update Miniconda on Ubuntu 20.04 LTS, do the following:

1. Download Miniconda:
$ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-
Linux-x86_64.sh

https://github.com/spotify/dh-virtualenv


2. Install Miniconda:
$ bash Miniconda3-latest-Linux-x86_64.sh

3. Update all the installed packages in the root environment:
(base) $ conda update --all

Your fresh Miniconda installation comes with conda and a root environment containing a
Python interpreter and some basic packages installed. By default, the python and pip
executables of conda's root environment are installed into your home directory. The conda
root environment is known as base. You can view its location along with the locations of
any other available conda environments by issuing the following command:

(base) $ conda env list

Verify this root environment before creating your own conda environment:
1. Open a new shell after installing Miniconda.
2. Check where the root environment's python executable is installed:

(base) $ which python

3. Check the version of Python:
(base) $ python --version

4. Check where the root environment's pip executable is installed:
(base) $ which pip

5. Check the version of pip:
(base) $ pip --version

6. List the packages installed in the root environment:
(base) $ conda list

Next, create and work with your own conda environment named py377:
1. Create a new virtual environment named py377:

(base) $ conda create --name py377 python=3.7.7

2. Activate your new virtual environment:
(base) $ source activate py377

3. Check where your environment's python executable is installed:
(py377) $ which python

4. Check that the version of Python is 3.7.7:
(py377) $ python --version

5. List the packages installed in your environment:
(py377) $ conda list

6. Deactivate your environment:
(py377) $ conda deactivate

Using conda to create a virtual environment with Python 2.7 installed is as simple as 
the following:



(base) $ conda create --name py27 python=2.7.17

View your conda environments again to see whether py377 and py27 now appear in the list:
(base) $ conda env list

Lastly, let's delete the py27 environment since we won't be using it:
(base) $ conda remove --name py27 –all

Now that you know how to use conda to manage virtual environments, let's use it to
manage packages within those environments.

Package management
Since conda supports virtual environments, we can use pip to manage Python dependencies
from one project to another in an isolated manner just like we did with venv. As a general-
purpose package manager, conda has its own facilities for managing dependencies. We
know that conda list lists all the packages that conda has installed in the active virtual
environment. I also mentioned conda's use of package feeds, which are called channels:

1. You can get the list of channel URLs conda is configured to fetch from by entering this
command:

(base) $ conda info

2. Before proceeding any further, let's reactivate the py377 virtual environment you
created during the last exercise:

(base) $ source activate py377

(py377) $

3. Most Python development nowadays happens inside a Jupyter notebook, so let's install
those packages first:

(py377) $ conda install jupyter notebook

4. Enter y when prompted. This will install the jupyter and notebook packages along
with all their dependencies. When you enter conda list, you'll see that the list of
installed packages is much longer than before. Now, let's install some more Python
packages that we would need for a computer vision project:

(py377) $ conda install opencv matplotlib

5. Again, enter y when prompted. This time, the number of dependencies installed 
is smaller. Both opencv and matplotlib depend on numpy, so conda installs that
package automatically without you having to specify it. If you want to specify an older
version of opencv, you can install the desired version of the package 
this way:

(py377) $ conda install opencv=3.4.1

6. conda will then attempt to solve the active environment for this dependency. Since no
other packages installed in this active virtual environment depend on opencv, the target
version is easy to solve for. If they did, then you might encounter 
a package conflict and the reinstallation would fail. After solving, conda will prompt



you before downgrading opencv and its dependencies. Enter y to downgrade opencv to
version 3.4.1.

7. Now let's say you change your mind or a newer version of opencv is released that
addresses your previous concern. This is how you would upgrade opencv to the latest
version provided by the Anaconda distribution:

(py377) $ conda update opencv

8. This time, conda will prompt you to ask whether you want to update opencv and its
dependencies for the latest version. This time, enter n to cancel the package update.
Instead of updating packages individually, it's often easier to update all the packages
installed in an active virtual environment at once:

(py377) $ conda update --all

9. Removing installed packages is also straightforward:
(py377) $ conda remove jupyter notebook

10. When conda removes jupyter and notebook, it removes all of their dangling
dependencies as well. A dangling dependency is an installed package that no other
installed packages depend on. Like most general-purpose package managers, conda
will not remove any dependencies that other installed packages still 
depend on.

11. Sometimes you may not know the exact name of a package you want to install.
Amazon offers an AWS SDK for Python called Boto. Like many Python libraries,
there is a version of Boto for Python 2 and a newer version (Boto3) for Python 3. To
search Anaconda for packages with the word boto in their names, enter the following
command:

(py377) $ conda search '*boto*'

12. You should see boto3 and botocore in the search results. At the time of writing, the
most recent version of boto3 available on Anaconda is 1.13.11. To view details on that
specific version of boto3, enter the following command:

(py377) $ conda info boto3=1.13.11

13. The package details reveal that boto3 version 1.13.11 depends on botocore (botocore
>=1.16.11,<1.17.0), so installing boto3 gets you both.

Now let's say you've installed all the packages you need to develop an OpenCV project
inside a Jupyter notebook. How do you share these project requirements with someone else
so that they can recreate your work environment? The answer may surprise you:

1. You export your active virtual environment to a YAML file:
(py377) $ conda env export > my-environment.yaml

2. Much like the list of requirements that pip freeze generates, the YAML that conda
exports is a list of all the packages installed in your virtual environment together with
their pinned versions. Creating a conda virtual environment from an environment file
requires the -f option and the filename:

$ conda env create -f my-environment.yaml



3. The environment name is included in the exported YAML, so no --name option is
necessary to create the environment. Whoever creates a virtual environment from my-
environment.yaml will now see py377 in their list of environments when they issue
conda env list.

conda is a very powerful tool in a developer's arsenal. By combining general-purpose
package installation with virtual environments, it offers a compelling deployment story.
conda achieves many of the same goals Docker (up next) does, but without the use of
containers. It has an edge over Docker with respect to Python due to its focus on the data
science community. Because the leading machine learning frameworks (such as PyTorch
and TensorFlow) are largely CUDA-based, finding GPU-accelerated binaries is often
difficult. conda solves this problem by providing multiple precompiled binary versions 
of packages.
Exporting conda virtual environments to YAML files for installation on other machines
offers another deployment option. This solution is popular among the data science
community, but it does not work in production for embedded Linux. conda is not one of the
three package managers that Yocto supports. Even if conda was an option, the storage
needed to accommodate Minconda on a Linux image is not a good fit for most embedded
systems that are resource-constrained.
If your dev board has an NVIDIA GPU such as the NVIDIA Jetson series, then you really
want to use conda for onboard development. Luckily, there is a conda installer named
Miniforge (https://github.com/conda-forge/miniforge) that is known to work on 64-bit
ARM machines like the Jetsons. With conda onboard, you can then install jupyter, numpy,
pandas, scikit-learn, and most of the other popular Python data science libraries out
there.

Deploying Python applications with Docker
Docker offers another way to bundle Python code with software written in other languages.
The idea behind Docker is that instead of packaging and installing your application onto a
preconfigured server environment, you build and ship a container image with your
application and all its runtime dependencies. A container image is more like a virtual
environment than a virtual machine. A virtual machine is a complete system image
including a kernel and an operating system. A container image is a minimal user space
environment that only comes with the binaries needed to run your application.
Virtual machines run on top of a hypervisor that emulates hardware. Containers run
directly on top of the host operating system. Unlike virtual machines, containers are able to
share the same operating system and kernel without the use of hardware emulation. Instead,
they rely on two special features of the Linux kernel for isolation: namespaces and
cgroups. Docker did not invent container technology, but they were the first to build
tooling that made them easy to use. The tired excuse of works on my machine no longer
flies now that Docker makes it so simple to build and deploy container images.

https://github.com/conda-forge/miniforge


The anatomy of a Dockerfile
A Dockerfile describes the contents of a Docker image. Every Dockerfile contains a set of
instructions specifying what environment to use and which commands to run. Instead of
writing a Dockerfile from scratch, we will use an existing Dockerfile for a project template.
This Dockerfile generates a Docker image for a very simple Flask web application that you
can extend to fit your needs. The Docker image is built on top of an Alpine Linux, a very
slim Linux distribution that is commonly used for container deployments. Besides Flask,
the Docker image also includes uWSGI and Nginx for better performance.
Start by pointing your web browser at the uwsgi-nginx-flask-docker project on GitHub
(https://github.com/tiangolo/uwsgi-nginx-flask-docker). Then, click on the link to the
python-3.8-alpine Dockerfile from the 
README.md file.
Now look at the first line in that Dockerfile:

FROM tiangolo/uwsgi-nginx:python3.8-alpine

This FROM command tells Docker to pull an image named uwsgi-nginx from the tiangolo
namespace with the python3.8-alpine tag from Docker Hub. Docker Hub is a public
registry where people publish their Docker images for others to fetch and deploy. You can
set up your own image registry using a service such as AWS ECR or Quay if you prefer.
You will need to insert the name of your registry service in front of your namespace like
this:

FROM quay.io/my-org/my-app:my-tag

Otherwise, Docker defaults to fetching images from Docker Hub. FROM is like an include
statement in a Dockerfile. It inserts the contents of another Dockerfile into yours so that you
have something to build on top of. I like to think of this approach as layering images.
Alpine is the base layer, followed by Python 3.8, then uWSGI plus Nginx, and finally your
Flask application. You can learn more about how image layering works by digging into the
python3.8-alpine Dockerfile at https://hub.docker.com/r/tiangolo/uwsgi-nginx.
The next line of interest in the Dockerfile is the following:

RUN pip install flask

A RUN instruction runs a command. Docker executes the RUN instructions contained in the
Dockerfile sequentially in order to build the resulting Docker image. This RUN instruction
installs Flask into the system site-packages directory. We know that pip is available
because the Alpine base image also includes Python 3.8.
Let's skip over Nginx's environment variables and go straight to copying:

COPY ./app /app

This particular Dockerfile is located inside a Git repo along with several other files and
subdirectories. The COPY instruction copies a directory from the host Docker runtime
environment (usually a Git clone of a repo) into the container being built.
The python3.8-alpine.dockerfile file you are looking at resides in a docker-images
subdirectory of the tiangolo/uwsgi-nginx-flask-docker repo. Inside that docker-images

https://github.com/tiangolo/uwsgi-nginx-flask-docker
https://hub.docker.com/r/tiangolo/uwsgi-nginx


directory is an app subdirectory containing a Hello World Flask web application. This COPY
instruction copies the app directory from the example repo into the root directory of the
Docker image:

WORKDIR /app

The WORKDIR instruction tells Docker which directory to work from inside the container. In
this example, the /app directory that it just copied becomes the working directory. If the
target working directory does not exist, then WORKDIR creates it. Any subsequent non-
absolute paths that appear in this Dockerfile are hence relative to the /app directory.
Now let's see how an environment variable gets set inside the container:

ENV PYTHONPATH=/app

ENV tells Docker that what follows is an environment variable definition. PYTHONPATH is an
environment variable that expands into a list of colon-delimited paths where the Python
interpreter looks for modules and packages.
Next, let's jump a few lines down to the second RUN instruction:

RUN chmod +x /entrypoint.sh

The RUN instruction tells Docker to run a command from the shell. In this case, the
command being run is chmod, which changes file permissions. Here it renders the
/entrypoint.sh executable.
The next line in this Dockerfile is optional:

ENTRYPOINT ["/entrypoint.sh"]

ENTRYPOINT is the most interesting instruction in this Dockerfile. It exposes an executable
to the Docker host command line when starting the container. This lets you pass arguments
from the command line down to the executable inside the container. You can append these
arguments after docker run <image> on the command line. If there is more than one
ENTRYPOINT instruction in a Dockerfile, then only the last ENTRYPOINT is executed.
The last line in the Dockerfile is as follows:

CMD ["/start.sh"]

Like ENTRYPOINT instructions, CMD instructions execute at container start time rather than
build time. When an ENTRYPOINT instruction is defined in a Dockerfile, a CMD instruction
defines default arguments to be passed to that ENTRYPOINT. In this instance, the /start.sh
path is the argument passed to /entrypoint.sh. The last line in 
/entrypoint.sh executes /start.sh:

exec "$@"

The /start.sh script comes from the uwsgi-nginx base image. /start.sh starts Nginx
and uWSGI after /entrypoint.sh has configured the container runtime environment for
them. When CMD is used in conjunction with ENTRYPOINT, the default arguments set by CMD
can be overridden from the Docker host command line.
Most Dockerfiles do not have an ENTRYPOINT instruction, so the last line of a 
Dockerfile is usually a CMD instruction that runs in the foreground instead of default
arguments. I use this Dockerfile trick to keep a general-purpose Docker container running
for development:



CMD tail -f /dev/null

With the exception of ENTRYPOINT and CMD, all of the instructions in this example python-
3.8-alpine Dockerfile only execute when the container is being built.

Building a Docker image
Before we can build a Docker image, we need a Dockerfile. You may already have some
Docker images on your system. To see a list of Docker images, use the following:

$ docker images

Now, let's fetch and build the Dockerfile we just dissected:
1. Clone the repo containing the Dockerfile:

$ git clone https://github.com/tiangolo/uwsgi-nginx-flask-
docker.git

2. Switch to the docker-images subdirectory inside the repo:
$ cd uwsgi-nginx-flask-docker/docker-images

3. Copy python3.8-alpine.dockerfile to a file named Dockerfile:
$ cp python3.8-alpine.dockerfile Dockerfile

4. Build an image from the Dockerfile:
$ docker build -t my-image .

Once the image is done building, it will appear in your list of local Docker images:
$ docker images

A uwsgi-nginx base image should also appear in the list along with the newly built my-
image. Notice that the elapsed time since the uwsgi-nginx base image was created is much
greater than the time since my-image was created.

Running a Docker image
We now have a Docker image built that we can run as a container. To get a list of running
containers on your system, use the following:

$ docker ps

To run a container based on my-image, issue the following docker run command:
$ docker run -d --name my-container -p 80:80 my-image

Now observe the status of your running container:
$ docker ps

You should see a container named my-container based on an image named my-image in the
list. The -p option in the docker run command maps a container port to a host port. So,
container port 80 maps to host port 80 in this example. This 



port mapping allows the Flask web server running inside the container to service 
HTTP requests.
To stop my-container, run this command:

$ docker stop my-container

Now check the status of your running container again:
$ docker ps

my-container should no longer appear in the list of running containers. Is the container
gone? No, it is only stopped. You can still see my-container and its status by adding the -a
option to the docker ps command:

$ docker ps -a

We'll look at how to delete containers we no longer need a bit later.

Fetching a Docker image
Earlier in this section, I touched on image registries such as Docker Hub, AWS ECR, and
Quay. As it turns out, the Docker image that we built locally from a cloned GitHub repo is
already published on Docker Hub. It is much quicker to fetch the prebuilt image from
Docker Hub than to build it yourself on your system. The Docker images for the project can
be found at https://hub.docker.com/r/tiangolo/uwsgi-nginx-flask. To pull the same Docker
image that we built as my-image from Docker Hub, enter the following command:

$ docker pull tiangolo/uwsgi-nginx-flask:python3.8-alpine

Now look at your list of Docker images again:
$ docker images

You should see a new uwsgi-nginx-flask image in the list.
To run this newly fetched image, issue the following docker run command:

$ docker run -d --name flask-container -p 80:80 tiangolo/uwsgi-nginx-
flask:python3.8-alpine

You can substitute the full image name (repo:tag) in the preceding docker run command
with the corresponding image ID (hash) from docker images if you prefer not to type out
the full image name.

Publishing a Docker image
To publish a Docker image to Docker Hub, you must first have an account and log in to it.
You can create an account on Docker Hub by going to the website, https://hub.docker.com,
and signing up. Once you have an account, then you can push an existing image to your
Docker Hub repository:

1. Log in to the Docker Hub image registry from the command line:
$ docker login

https://hub.docker.com/r/tiangolo/uwsgi-nginx-flask
https://hub.docker.com/


2. Enter your Docker Hub username and password when prompted.
3. Tag an existing image with a new name that starts with the name of your repository:

$ docker tag my-image:latest <repository>/my-image:latest

Replace <repository> in the preceding command with the name of your
repository (the same as your username) on Docker Hub. You can also
substitute the name of another existing image you wish to push for my-
image:latest.

4. Push the image to the Docker Hub image registry:
$ docker push <repository>/my-image:latest

Again, make the same replacements as you did for Step 3.

Images pushed to Docker Hub are publicly available by default. To visit the web page for
your newly published image, go to
https://hub.docker.com/repository/docker/<repository>/my-image. Replace <repository>

in the preceding URL with the name of your repository (same as your username) on Docker
Hub. You can also substitute the name of the actual image you pushed for my-
image:latest if different. If you click on the Tags tab on that web page, you should see the
docker pull command for fetching that image.

Cleaning up
We know that docker images lists images and docker ps lists containers. Before we can
delete a Docker image, we must first delete any containers that reference it. To delete 
a Docker container, you first need to know the container's name or ID:

1. Find the target Docker container's name:
$ docker ps -a

2. Stop the container if it is running:
$ docker stop flask-container

3. Delete the Docker container:
$ docker rm flask-container

Replace flask-container in the two preceding commands with the container name or ID
from Step 1. Every container that appears under docker ps also has an image name or ID
associated with it. Once you have deleted all the containers that reference an image, you
can then delete the image.
Docker image names (repo:tag) can get quite long (for example, tiangolo/uwsgi-nginx-
flask:python3.8-alpine). For that reason, I find it easier to just copy and paste an image's
ID (hash) when deleting:

1. Find the Docker image's ID:
$ docker images



2. Delete the Docker image:
$ docker rmi <image-ID>

Replace <image-ID> in the preceding command with the image ID from Step 1.
If you simply want to blow away all the containers and images that you are no longer using
on your system, then here is the command:

$ docker system prune -a

docker system prune deletes all stopped containers and dangling images.
We've seen how pip can be used to install a Python application's dependencies. You simply
add a RUN instruction that calls pip install to your Dockerfile. Because containers are
sandboxed environments, they offer many of the same benefits that virtual environments
do. But unlike conda and venv virtual environments, Buildroot and Yocto both have support
for Docker containers. Buildroot has the docker-engine and docker-cli packages. Yocto
has the meta-virtualization layer. If your device needs isolation because of Python
package conflicts, then you can achieve that with Docker.
The docker run command provides options for exposing operating system resources to
containers. Specifying a bind mount allows a file or directory on the host machine to be
mounted inside a container for reading and writing. By default, containers publish no ports
to the outside world. When you ran your my-container image, you used the -p option to
publish port 80 from the container to port 80 on the host. The --device option adds a host
device file under /dev to an unprivileged container. If you wish to grant access to all
devices on the host, then use the --privileged option.
What containers excel at is deployments. Being able to push a Docker image that can then
be easily pulled and run on any of the major cloud platforms has revolutionized the
DevOps movement. Docker is also making inroads in the embedded Linux space thanks to
OTA update solutions such as balena. One of the downsides of Docker is the storage
footprint and memory overhead of the runtime. The Go binaries are a bit bloated, but
Docker runs on quad-core 64-bit ARM SoCs such as the Raspberry Pi 4 just fine. If your
target device has enough power, then run Docker on it. Your software development team
will thank you.

Summary
By now, you're probably asking yourself, what does any of this Python packaging stuff have
to do with embedded Linux? The answer is not much, but bear in mind that the word
programming also happens to be in the title of this book. And this chapter has everything to
do with modern-day programming. To succeed as a developer in this day and age, you need
to be able to deploy your code to production fast, frequently, and in a repeatable manner.
That means managing your dependencies carefully and automating as much of the process
as possible. You have now seen what tools are available for doing that with Python.
In the next chapter, we will look in detail at the Linux process model and describe what a
process really is, how it relates to threads, how they cooperate, and how they are scheduled.



Understanding these things is important if you want to create a robust and maintainable
embedded system.

Further reading
The following resources have more information about the topics introduced in this chapter:

Python Packaging User Guide, PyPA: https://packaging.python.org
setup.py vs requirements.txt, by Donald Stufft: https://caremad.io/posts/2013/07/setup-
vs-requirement
pip User Guide, PyPA: https://pip.pypa.io/en/latest/user_guide/
Poetry Documentation, Poetry: https://python-poetry.org/docs
conda user guide, Continuum Analytics:
https://docs.conda.io/projects/conda/en/latest/user-guide
docker docs, Docker Inc.:
https://docs.docker.com/engine/reference/commandline/docker

https://packaging.python.org/
https://caremad.io/posts/2013/07/setup-vs-requirement
https://pip.pypa.io/en/latest/user_guide/
https://python-poetry.org/docs
https://docs.conda.io/projects/conda/en/latest/user-guide
https://docs.docker.com/engine/reference/commandline/docker


Chapter 17: Learning about Processes and
Threads
In the preceding chapters, we considered the various aspects of creating an embedded Linux
platform. Now, it is time to start looking at how you can use the platform to create a
working device. In this chapter, I will talk about the implications of the Linux process
model and how it encompasses multithreaded programs. I will look at the pros and cons of
using single-threaded and multithreaded processes, as well as asynchronous message
passing between processes and coroutines. Lastly, I will look at scheduling and differentiate
between timeshare and real-time scheduling policies.
While these topics are not specific to embedded computing, it is important for a designer of
any embedded device to have an overview of these topics. There are many good references
on the subject, some of which I will list at the end of this chapter, but in general, they do not
consider the embedded use cases. Due to this, I will be concentrating on the concepts and
design decisions rather than on the function calls and code.
In this chapter, we will cover the following topics:

Process or thread?
Processes
Threads
ZeroMQ
Scheduling

Let's get started!

Technical requirements
To follow along with the examples in this chapter, make sure the following software is
installed on your Linux-based host system:

Python: Python 3 interpreter and standard library
Miniconda: Minimal installer for the conda package and virtual 
environment manager

See the section on conda in Chapter 16, Packaging Python, for directions on how to install
Miniconda if you haven't already. The GCC C compiler and GNU make are also needed for
this chapter's exercises, but these tools already come with most Linux distributions.
All the code for this chapter can be found in the Chapter17 folder of this book's GitHub
repository: https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-
Third-Edition.

https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


Process or thread?
Many embedded developers who are familiar with real-time operating systems (RTOS)
consider the Unix process model to be cumbersome. On the other hand, they see a
similarity between an RTOS task and a Linux thread, and they have a tendency to transfer
an existing design using a one-to-one mapping of RTOS tasks to threads. I have, on several
occasions, seen designs in which the entire application is implemented with one process
containing 40 or more threads. I want to spend some time considering whether this is a
good idea or not. Let's begin with some definitions.
A process is a memory address space and a thread of execution, as shown in the following
diagram. The address space is private to the process, so threads running in different
processes cannot access it. This memory separation is created by the memory
management subsystem in the kernel, which keeps a memory page mapping for each
process and reprograms the memory management unit on each context switch. I will
describe how this works in detail in Chapter 18, Managing Memory. Part of the address
space is mapped to a file that contains the code and static data that the program is running,
as shown here:

Figure 17.1 – Process

As the program runs, it will allocate resources such as stack space, heap memory,
references to files, and so on. When the process terminates, these resources are reclaimed
by the system: all the memory is freed up and all the file descriptors are closed.



Processes can communicate with each other using inter-process communication (IPC),
such as local sockets. I will talk about IPC later on.
A thread is a thread of execution within a process. All processes begin with one thread that
runs the main() function and is called the main thread. You can create additional threads,
for example, using the pthread_create(3) POSIX function, which results in multiple
threads executing in the same address space, as shown in the following diagram:

Figure 17.2 – Multiple threads

Being in the same process, the threads share resources with each other. They can read and
write the same memory and use the same file descriptors. Communication between threads
is easy, as long as you take care of the synchronization and locking issues.
So, based on these brief details, you can imagine two extreme designs for a hypothetical
system with 40 RTOS tasks being ported to Linux.
You could map tasks to processes and have 40 individual programs communicating through
IPC, for example, with messages being sent through sockets. You would greatly reduce
memory corruption problems since the main thread running in each process is protected
from the others, and you would reduce resource leakage since each process is cleaned up
after it exits. However, the message interface between processes is quite complex and,
where there is tight cooperation between a group of processes, the number of messages
might be large and become a limiting factor regarding the performance of the system.
Furthermore, any one of those 40 processes may terminate, perhaps because of a bug
causing it to crash, leaving the other 39 to carry on. Each process would have to handle the
fact that its neighbors are no longer running and recover gracefully.



At the other extreme, you could map tasks to threads and implement the system as a single
process containing 40 threads. Cooperation becomes much easier because they share the
same address space and file descriptors. The overhead of sending messages is reduced or
eliminated, and context switches between threads are faster than between processes. The
downside is that you have introduced the possibility of one task corrupting the heap or the
stack of another. If any of the threads encounters a fatal bug, the whole process will
terminate, taking all the threads with it. Finally, debugging a complex multithreaded
process can be a nightmare.
The conclusion you should draw is that neither design is ideal and that there is a better way
to do things. But before we get to that point, I will delve a little more deeply into the APIs
and the behavior of processes and threads.

Processes
A process holds the environment in which threads can run: it holds the memory mappings,
the file descriptors, the user and group IDs, and more. The first process is the init process,
which is created by the kernel during boot and has a PID of one. Thereafter, processes are
created by duplication in an operation known as forking.

Creating a new process
The POSIX function to create a process is fork(2). It is an odd function because, for each
successful call, there are two returns: one in the process that made the call, known as the
Parent, and one in the newly created process, known as the Child, as shown in the
following diagram:



Figure 17.3 – Forking

Immediately after the call, the child is an exact copy of the parent: it has the same stack, the
same heap, the same file descriptors, and it executes the same line of code – the one
following fork. The only way the programmer can tell them apart is by looking at the
return value of fork: it is zero for the child and greater than zero for the parent. Actually,
the value that's returned to the parent is the PID of the newly created child process. There is
a third possibility, which is that the return value is negative, which means that the fork call
failed and there is still only one process.
Although the two processes are mostly identical, they are in separate address spaces.
Changes that are made to a variable by one will not be seen by the other. Under the hood,
the kernel does not make a physical copy of the parent's memory, which would be quite a
slow operation and consume memory unnecessarily. Instead, the memory is shared but
marked with a copy-on-write (CoW) flag. If either parent or child modifies this memory,
the kernel makes a copy and then writes to the copy. This makes it an efficient fork function
that also retains the logical separation of process address spaces. I will discuss CoW in
Chapter 18, Managing Memory.
Now, let's learn how we can terminate a process.



Terminating a process
A process may be stopped voluntarily by calling the exit(3) function or, involuntarily, by
receiving a signal that is not handled. One signal in particular, SIGKILL, cannot be handled,
so it will always kill a process. In all cases, terminating the process will stop all threads,
close all file descriptors, and release all memory. The system sends a signal, SIGCHLD, to the
parent so that it knows this has happened.
Processes have a return value that is composed of either the argument to exit, if it
terminated normally, or the signal number if it was killed. The chief use for this is in shell
scripts: it allows you to test the return value from a program. By convention, 0 indicates
success and any other values indicate a failure of some sort.
The parent can collect the return value with the wait(2) or waitpid(2) functions. This
causes a problem: there will be a delay between a child terminating and its parent collecting
the return value. In that period, the return value must be stored somewhere, and the PID
number of the now dead process cannot be reused. A process in this state is known as a
zombie, which is displayed as state Z in the ps and top commands. As long as the parent
calls wait or waitpid whenever it is notified of a child's termination (by means of the
SIGCHLD signal; refer to Linux System Programming, by Robert Love and O'Reilly Media or
The Linux Programming Interface, by Michael Kerrisk, No Starch Press for details on
handling signals). Usually, zombies exist for too short a time to show up in process listings.
They will become a problem if the parent fails to collect the return value because
eventually, there will not be enough resources to create any more processes.
The program in MELP/Chapter17/fork-demo illustrates process creation 
and termination:

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/wait.h>

int main(void)

{

      int pid;

      int status;

      pid = fork();

      if (pid == 0) {

          printf("I am the child, PID %d\n", getpid());

          sleep(10);

          exit(42);

      } else if (pid > 0) {

          printf("I am the parent, PID %d\n", getpid());

          wait(&status);

          printf("Child terminated, status %d\n", WEXITSTATUS(status));

      } else



          perror("fork:");

      return 0;

}

The wait function blocks until a child process exits and stores the exit status. When you run
it, you will see something like this:

I am the parent, PID 13851

I am the child, PID 13852

Child terminated with status 42

The child process inherits most of the attributes of the parent, including the user and group
IDs, all open file descriptors, signal handling, and scheduling characteristics.

Running a different program
The fork function creates a copy of a running program, but it does not run a different
program. For that, you need one of the exec functions:

int execl(const char *path, const char *arg, ...);

int execlp(const char *file, const char *arg, ...);

int execle(const char *path, const char *arg,

      ..., char * const envp[]);

int execv(const char *path, char *const argv[]);

int execvp(const char *file, char *const argv[]);

int execvpe(const char *file, char *const argv[],

      ..., char *const envp[]);

Each takes a path to the program file to load and run. If the function succeeds, the kernel
discards all the resources of the current process, including memory and file descriptors, and
allocates memory to the new program being loaded. When the thread that called exec*
returns, it returns not to the line of code after the call but to the main() function of the new
program. There is an example of a command launcher in MELP/Chapter17/exec-demo: it
prompts for a command, such as /bin/ls, and forks and executes the string you enter. Here
is the code:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/wait.h>

int main(int argc, char *argv[])

{

      char command_str[128];

      int pid;

      int child_status;

      int wait_for = 1;



      while (1) {

          printf("sh> ");

          scanf("%s", command_str);

          pid = fork();

          if (pid == 0) {

                /* child */

                printf("cmd '%s'\n", command_str);

                execl(command_str, command_str, (char *)NULL);

                /* We should not return from execl, so only get

                  to this line if it failed */

                perror("exec");

                exit(1);

          }

          if (wait_for) {

                waitpid(pid, &child_status, 0);

                printf("Done, status %d\n", child_status);

          }

      }

      return 0;

}

Here is what you will see when you run it:
# ./exec-demo

sh> /bin/ls

cmd '/bin/ls'

bin etc lost+found proc sys var

boot home media run tmp

dev lib mnt sbin usr

Done, status 0

sh>

You can terminate the program by typing Ctrl + C.
It might seem odd to have one function that duplicates an existing process and another that
discards its resources and loads a different program into memory, especially since it is
common for a fork to be followed almost immediately by one of the exec functions. Most
operating systems combine the two actions into a single call.
There are distinct advantages to this, however. For example, it makes it very easy to
implement redirection and pipes in the shell. Imagine that you want to get a directory
listing. This is the sequence of events:

1. You type ls in the shell prompt.
2. The shell forks a copy of itself.
3. The child execs /bin/ls.
4. The ls program prints the directory listing to stdout (file descriptor 1), which is

attached to the terminal. You will see the directory listing.



5. The ls program terminates, and the shell regains control.

Now, imagine that you want the directory listing to be written to a file by redirecting the
output using the > character. Now, the sequence is as follows:

1. You type ls > listing.txt.
2. The shell forks a copy of itself.
3. The child opens and truncates the listing.txt file and uses dup2(2) to copy the file

descriptor of the file over file descriptor 1 (stdout).
4. The child execs /bin/ls.
5. The program prints the listing as it did previously, but this time, it is writing to

listing.txt.
6. The ls program terminates, and the shell regains control.

IMPORTANT NOTE
There was an opportunity in step 3 to modify the environment of the child
process before executing the program. The ls program does not need to
know that it is writing to a file rather than a terminal. Instead of a file,
stdout could be connected to a pipe so that the ls program, still unchanged,
can send output to another program. This is part of the Unix philosophy of
combining many small components that each do a job well, as described in
The Art of Unix Programming, by Eric Steven Raymond and Addison Wesley,
especially in the Pipes, Redirection, and Filters section.

So far, the programs we've looked at in this section all run in the foreground. But what
about programs that run in the background, waiting for things to happen? Let's take a look.

Daemons
We have encountered daemons in several places already. A daemon is a process that runs in
the background, owned by the init process, and not connected to a controlling terminal.
The steps to create a daemon are as follows:

1. Call fork to create a new process, after which the parent should exit, thus creating an
orphan that will be re-parented to init.

2. The child process calls setsid(2), creating a new session and process group that it is
the sole member of. The exact details do not matter here; you can simply consider this
a way of isolating the process from any controlling terminal.

3. Change the working directory to the root directory.
4. Close all file descriptors and redirect stdin, stdout, and stderr (descriptors 0, 1, and

2) to /dev/null so that there is no input, and all output is hidden.



Thankfully, all of the preceding steps can be achieved with a single function call; 
that is, daemon(3).

Inter-process communication
Each process is an island of memory. You can pass information from one to another in two
ways. Firstly, you can copy it from one address space to the other. Secondly, you can create
an area of memory that both can access and share the data of.
The first is usually combined with a queue or buffer so that there is a sequence of messages
passing between processes. This implies copying the message twice: first to a holding area
and then to the destination. Some examples of this are sockets, pipes, and message queues.
The second way requires not only a method of creating memory that is mapped to two (or
more) address spaces at once, but it is also a means of synchronizing access to that memory,
for example, using semaphores or mutexes.
POSIX has functions for all of these. There is an older set of APIs known as System V
IPC, which provides message queues, shared memory, and semaphores, but it is not as
flexible as the POSIX equivalents, so I will not describe them here. The manual page on
svipc(7) gives an overview of these facilities, and there are more details in The Linux
Programming Interface, by Michael Kerrisk, and Unix Network Programming, Volume 2,
by W. Richard Stevens.
Message-based protocols are usually easier to program and debug than shared memory, but
are slow if the messages are large or there are many of them.
Message-based IPC
There are several options for message-based IPC, all of which I will summarize as follows.
The attributes that differentiate one from the other are as follows:

Whether the message flow is uni- or bi-directorial.
Whether the data flow is a byte stream with no message boundary or discrete messages
with boundaries preserved. In the latter case, the maximum size of a message is
important.
Whether messages are tagged with a priority.

The following table summarizes these properties for FIFOs, sockets, and message queues:



The first form of message-based IPC we will look at is Unix sockets.

Unix (or local) sockets
Unix sockets fulfill most requirements and, coupled with the familiarity of the sockets API,
are by far the most common mechanism.
Unix sockets are created with the AF_UNIX address family and bound to a pathname. Access
to the socket is determined by the access permission of the socket file. As with internet
sockets, the socket type can be SOCK_STREAM or SOCK_DGRAM, the former giving a
bidirectional byte stream and the latter providing discrete messages with preserved
boundaries. Unix socket datagrams are reliable, which means that they will not be dropped
or reordered. The maximum size for a datagram is system-dependent and is available via
/proc/sys/net/core/wmem_max. It is typically 100 KiB or more.
Unix sockets do not have a mechanism to indicate the priority of a message.

FIFOs and named pipes
FIFO and named pipe are just different terms for the same thing. They are an extension of
the anonymous pipe that is used to communicate between parent and child processes when
implementing pipes in the shell.
A FIFO is a special sort of file, created by the mkfifo(1) command. As with Unix sockets,
the file access permissions determine who can read and write. They are unidirectional,
which means that there is one reader and usually one writer, though there may be several.
The data is a pure byte stream but guarantee the atomicity of messages that are smaller than
the buffer associated with the pipe. In other words, writes less than this size will not be split
into several smaller writes, so you will read the whole message in one go as long as the size
of the buffer on your end is large enough. The default size of the FIFO buffer is 64 KiB on



modern kernels and can be increased using fcntl(2) with F_SETPIPE_SZ, up to the value in
/proc/sys/fs/pipe-max-size, which is typically 1 MiB. There is no concept of priority.

POSIX message queues
Message queues are identified by a name, which must begin with a forward slash, /, and
contain only one / character: message queues are actually kept in a pseudo filesystem of the
mqueue type. You create a queue and get a reference to an existing queue through
mq_open(3), which returns a file descriptor. Each message has a priority, and messages are
read from the queue based on priority and then on the age order. Messages can be up to
/proc/sys/kernel/msgmax bytes long.
The default value is 8 KiB, but you can set it to be any size in the range of 128 bytes to 1
MiB by writing the value to /proc/sys/kernel/msgmax. Since the reference is a file
descriptor, you can use select(2), poll(2), and other similar functions to wait for activity
in the queue.
Refer to the Linux mq_overview(7) man page for more details.
Summary of message-based IPC
Unix sockets are used the most often because they offer all that is needed, except perhaps
message priority. They are implemented on most operating systems, so they confer
maximum portability.
FIFOs are less frequently used, mostly because they lack an equivalent to a datagram. On
the other hand, the API is very simple, since it provides the normal open(2), close(2),
read(2), and write(2) file calls.
Message queues are the least commonly used of this group. The code paths in the kernel are
not optimized in the way that socket (network) and FIFO (filesystem) calls are.
There are also higher-level abstractions such as D-Bus, which are moving from mainstream
Linux to embedded devices. D-Bus uses Unix sockets and shared memory under the
surface.
Shared memory-based IPC
Sharing memory removes the need to copy data between address spaces but introduces the
problem of synchronizing accesses to it. Synchronization between processes is commonly
achieved using semaphores.

POSIX shared memory
To share memory between processes, you must create a new area of memory and then map
it to the address space of each process that wants access to it, as shown in the following
diagram:



Figure 17.4 – POSIX shared memory

Naming POSIX shared memory segments follows the pattern we encountered with message
queues. The segments are identified by names that begin with a / character and have
exactly one such character:

#define SHM_SEGMENT_NAME "/demo-shm"

The shm_open(3) function takes the name and returns a file descriptor for it. If it does not
exist already and the O_CREAT flag is set, then a new segment is created. Initially, it has a
size of zero. You can use the (misleadingly named) ftruncate(2) function to expand it to
the desired size:

int shm_fd;

struct shared_data *shm_p;

/* Attempt to create the shared memory segment */

shm_fd = shm_open(SHM_SEGMENT_NAME, O_CREAT | O_EXCL | O_RDWR, 0666);

if (shm_fd > 0) {

    /* succeeded: expand it to the desired size (Note: dont't

   do this every time because ftruncate fills it with zeros) */

    printf("Creating shared memory and setting size=%d\n",

            SHM_SEGMENT_SIZE);

    if (ftruncate(shm_fd, SHM_SEGMENT_SIZE) < 0) {

        perror("ftruncate");

        exit(1);



    }

    […]

} else if (shm_fd == -1 && errno == EEXIST) {

    /* Already exists: open again without O_CREAT */

    shm_fd = shm_open(SHM_SEGMENT_NAME, O_RDWR, 0);

    […]

}

Once you have a descriptor for the shared memory, you map it to the address space of the
process using mmap(2) so that threads in different processes can access the memory:

/* Map the shared memory */

shm_p = mmap(NULL, SHM_SEGMENT_SIZE, PROT_READ | PROT_WRITE,

            MAP_SHARED, shm_fd, 0);

The program in MELP/Chapter17/shared-mem-demo provides an example of using a shared
memory segment to communicate between processes. Here is the main function:

static sem_t *demo_sem;

[…]

int main(int argc, char *argv[])

{

      char *shm_p;

      printf("%s PID=%d\n", argv[0], getpid());

      shm_p = get_shared_memory();

      while (1) {

          printf("Press enter to see the current contents of shm\n");

          getchar();

          sem_wait(demo_sem);

          printf("%s\n", shm_p);

          /* Write our signature to the shared memory */

          sprintf(shm_p, "Hello from process %d\n", getpid());

          sem_post(demo_sem);

      }

      return 0;

}

The program uses a shared memory segment to communicate a message from one process
to another. The message is Hello from process string, followed by its PID. The
get_shared_memory function is responsible for creating the memory segment, if it does not
exist, or getting the file descriptor for it if it does. It returns a pointer to the memory
segment. Notice that there is a semaphore to synchronize access to the memory so that one
process does not overwrite a message from another.
To try it out, you need two instances of the program running in separate terminal sessions.
In the first terminal, you will see something like this:

# ./shared-mem-demo

./shared-mem-demo PID=271

Creating shared memory and setting size=65536



Press enter to see the current contents of shm

Press enter to see the current contents of shm

Hello from process 271

Because this is the first time the program is being run, it creates the memory segment.
Initially, the message area is empty, but after one run through the loop, it contains the PID
of this process, which is 271. Now, you can run a second instance in another terminal:

# ./shared-mem-demo

./shared-mem-demo PID=279

Press enter to see the current contents of shm

Hello from process 271

Press enter to see the current contents of shm

Hello from process 279

It does not create the shared memory segment because it exists already, and it displays the
message that it contains already, which is the PID of the other program. Pressing Enter
causes it to write its own PID, which the first program would be able to see. By doing this,
the two programs can communicate with each other.
The POSIX IPC functions are part of the POSIX real-time extensions, so you need to link
them with librt. Oddly, the POSIX semaphores are implemented in the POSIX threads
library, so you need to link to the pthreads library as well. Hence, the compilation
arguments are as follows when you're targeting Arm Cortex-A8 SoCs:

$ arm-cortex_a8-linux-gnueabihf-gcc shared-mem-demo.c -lrt -pthread \

-o arm-cortex_a8-linux-gnueabihf-gcc

This concludes our survey of IPC methods. We will revisit message-based IPC again when
we cover ZeroMQ. Now, it is time to look at multithreaded processes.

Threads
The programming interface for threads is the POSIX threads API, which was first defined
in the IEEE POSIX 1003.1c standard (1995) and is commonly known as pthreads. It is
implemented as an additional part of the libpthread.so C library. There have been two
implementations of pthreads over the last 15 years or so: LinuxThreads and Native
POSIX Thread Library (NPTL). The latter is much more compliant with the
specification, particularly regarding the handling of signals and process IDs. It is pretty
dominant now, but you may come across some older versions of uClibc that use
LinuxThreads.

Creating a new thread
The function you can use to create a thread is pthread_create(3):

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,

      void *(*start_routine) (void *), void *arg);



It creates a new thread of execution that begins in the start_routine function and places a
descriptor in pthread_t, which is pointed to by thread. It inherits the scheduling
parameters of the calling thread, but these can be overridden by passing a pointer to the
thread attributes in attr. The thread will start executing immediately.
pthread_t is the main way to refer to the thread within the program, but the thread can also
be seen from outside using a command such as ps -eLf:

UID PID PPID LWP C NLWP STIME TTY TIME CMD

...

chris 6072 5648 6072 0 3 21:18 pts/0 00:00:00 ./thread-demo

chris 6072 5648 6073 0 3 21:18 pts/0 00:00:00 ./thread-demo

In the preceding output, the thread-demo program has two threads. The PID and PPID
columns show that they all belong to the same process and have the same parent, as you
would expect. The column marked LWP is interesting, though. LWP stands for Light
Weight Process, which, in this context, is another name for a thread. The numbers in that
column are also known as Thread IDs or TIDs. In the main thread, the TID is the same as
the PID, but for the others, it is a different (higher) value. You can use a TID in places
where the documentation states that you must give a PID, but be aware that this behavior is
specific to Linux and is not portable. Here is a simple program that illustrates the life cycle
of a thread (the code is in MELP/Chapter17/thread-demo):

#include <stdio.h>

#include <unistd.h>

#include <pthread.h>

#include <sys/syscall.h>

static void *thread_fn(void *arg)

{

      printf("New thread started, PID %d TID %d\n",

          getpid(), (pid_t)syscall(SYS_gettid));

      sleep(10);

      printf("New thread terminating\n");

      return NULL;

}

int main(int argc, char *argv[])

{

      pthread_t t;

      printf("Main thread, PID %d TID %d\n",

          getpid(), (pid_t)syscall(SYS_gettid));

      pthread_create(&t, NULL, thread_fn, NULL);

      pthread_join(t, NULL);

      return 0;

}

Note that, in the thread_fn function, I am retrieving the TID using syscall(SYS_gettid).
Prior to glibc 2.80, you had to call Linux directly through a syscall because there was no
C library wrapper for gettid().



There is a limit to the total number of threads that a given kernel can schedule. The limit
scales according to the size of the system, from around 1,000 on small devices up to tens of
thousands on larger embedded devices. The actual number is available in
/proc/sys/kernel/threads-max. Once you reach this limit, fork and pthread_create 
will fail.

Terminating a thread
A thread terminates when any of the following occurs:

It reaches the end of its start_routine.
It calls pthread_exit(3).
It is canceled by another thread calling pthread_cancel(3).
The process that contains the thread terminates, for example, because of a thread
calling exit(3), or the process receiving a signal that is not handled, masked, 
or ignored.

Note that if a multithreaded program calls fork, only the thread that made the call will exist
in the new child process. Fork does not replicate all threads.
A thread has a return value, which is a void pointer. One thread can wait for another to
terminate and collect its return value by calling pthread_join(2). There is an example of
this in the code for thread-demo, as we mentioned in the preceding section. This produces a
problem that is very similar to the zombie problem among processes: the resources of the
thread, such as the stack, cannot be freed up until another thread has joined with it. If
threads remain unjoined, there is a resource leak in the program.

Compiling a program with threads
The support for POSIX threads is part of the C library in the libpthread.so library.
However, there is more to building programs with threads than linking the library: there
must be changes to the way the compiler generates code to make sure that certain global
variables, such as errno, have one instance per thread rather than one for the whole
process.

TIP
When building a threaded program, you must add the -pthread switch to the compile and
link stages. However, you don't have to also use -lpthread for the link stage, as you might
expect if you use -pthread.

Inter-thread communication



The big advantage of threads is that they share the address space and can share memory
variables. This is also a big disadvantage because it requires synchronization to preserve
data consistency in a manner similar to memory segments shared between processes but
with the provision that, with threads, all memory is shared. In fact, threads can create
private memory using thread local storage (TLS), but I will not cover that here.
The pthreads interface provides the basics necessary to achieve synchronization: mutexes
and condition variables. If you want more complex structures, you will have to build them
yourself.
It is worth noting that all the IPC methods we described earlier – that is, sockets, pipes, and
message queues – work equally well between threads in the same process.

Mutual exclusion
To write robust programs, you need to protect each shared resource with a mutex lock, and
make sure that every code path that reads or writes the resource has locked the mutex first.
If you apply this rule consistently, most of the problems should be solved. The ones that
remain are associated with the fundamental behavior of mutexes. I will list them briefly
here but will not go into too much detail:

Deadlock: This occurs when mutexes become permanently locked. A classic situation
is the deadly embrace, in which two threads each require two mutexes and have
managed to lock one of them but not the other. Each thread blocks, waiting for the lock
the other has, and so they remain as they are. One simple rule for avoiding the deadly
embrace problem is to make sure that mutexes are always locked in the same order.
Other solutions involve timeouts and back-off periods.
Priority inversion: The delays caused by waiting for a mutex can cause a real-time
thread to miss deadlines. The specific case of priority inversion happens when a high
priority thread becomes blocked, waiting for a mutex locked by a low priority thread.
If the low priority thread is preempted by other threads of intermediate priority, the
high priority thread is forced to wait for an unbounded length of time. There are mutex
protocols called priority inheritance and priority ceiling that resolve the problem at
the expense of greater processing overhead in the kernel for each lock and unlock call.
Poor performance: Mutexes introduce minimal overhead to the code, as long as
threads don't have to block on them most of the time. If your design has a resource that
is needed by a lot of threads, however, the contention ratio becomes significant. This is
usually a design issue that can be resolved using finer grained locking or a different
algorithm.

Mutexes are not the only way to synchronize between threads. We witnessed how two
processes can use a semaphore to notify each other back when we covered POSIX shared
memory. Threads have a similar construct.



Changing conditions
Cooperating threads need to be able to alert one another that something has changed and
needs attention. This is called a condition, and the alert is sent through a condition
variable, or condvar.
A condition is just something that you can test to give a true or false result. A simple
example is a buffer that contains either zero or some items. One thread takes items from the
buffer and sleeps when it is empty. Another thread places items into the buffer and signals
the other thread that it has done so because the condition that the other thread is waiting on
has changed. If it is sleeping, it needs to wake up and do something. The only complexity is
that the condition is, by definition, a shared resource, so it must be protected by a mutex.
Here is a simple program with two threads. The first is the producer: it wakes every second
and puts some data into a global variable before signaling that there has been a change. The
second thread is the consumer: it waits on the condition variable and tests the condition
(that there is a string in the buffer of nonzero length) each time it wakes up. You can find
the code in MELP/Chapter17/condvar-demo:

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <unistd.h>

#include <string.h>

char g_data[128];

pthread_cond_t cv = PTHREAD_COND_INITIALIZER;

pthread_mutex_t mutx = PTHREAD_MUTEX_INITIALIZER;

void *consumer(void *arg)

{

      while (1) {

          pthread_mutex_lock(&mutx);

          while (strlen(g_data) == 0)

               pthread_cond_wait(&cv, &mutx);

          /* Got data */

          printf("%s\n", g_data);

          /* Truncate to null string again */

          g_data[0] = 0;

          pthread_mutex_unlock(&mutx);

      }

      return NULL;

}

void *producer(void *arg)

{

      int i = 0;

      while (1) {

          sleep(1);



          pthread_mutex_lock(&mutx);

          sprintf(g_data, "Data item %d", i);

          pthread_mutex_unlock(&mutx);

          pthread_cond_signal(&cv);

          i++;

      }

      return NULL;

}

Note that when the consumer thread blocks on the condvar, it does so while holding a
locked mutex, which would seem to be a recipe for deadlock the next time the producer
thread tries to update the condition. To avoid this, pthread_condwait(3) unlocks the mutex
after the thread is blocked, and then locks it again before waking it and returning from the
wait.

Partitioning the problem
Now that we have covered the basics of processes and threads and the ways in which they
communicate, it is time to see what we can do with them.
Here are some of the rules I use when building systems:

Rule 1: Keep tasks that have a lot of interaction together: It is important to minimize
overheads by keeping closely inter-operating threads together in one process.
Rule 2: Don't put all your threads in one basket: On the other hand, try and keep
components with limited interaction in separate processes, in the interests of resilience
and modularity.
Rule 3: Don't mix critical and noncritical threads in the same process: This is an
amplification of Rule 2: the critical part of the system, which might be a machine
control program, should be kept as simple as possible and written in a more rigorous
way than other parts. It must be able to continue, even if other processes fail. If you
have real-time threads, by definition, they must be critical and should go into a process
by themselves.
Rule 4: Threads shouldn't get too intimate: One of the temptations when writing a
multithreaded program is to intermingle the code and variables between threads
because it is an all-in-one program and easy to do. Keep the threads modular, with
well-defined interactions.
Rule 5: Don't think that threads are free: It is very easy to create additional threads, but
there is a cost, not least in terms of the additional synchronization necessary to
coordinate their activities.
Rule 6: Threads can work in parallel: Threads can run simultaneously on a multicore
processor, giving higher throughput. If you have a large computing job, you can create
one thread per core and make maximum use of the hardware. There are libraries to



help you do this, such as OpenMP. You should probably not be coding parallel
programming algorithms from scratch.

The Android design is a good illustration. Each application is a separate Linux process that
helps modularize memory management and ensures that one app crashing does not affect
the whole system. The process model is also used for access control: a process can only
access the files and resources that its UID and GIDs allow it to. There are a group of
threads in each process. There is one to manage and update the user interface, one to handle
signals from the operating system, several to manage dynamic memory allocation and
freeing up Java objects, and a worker pool of at least two threads for receiving messages
from other parts of the system using the Binder protocol.
To summarize, processes provide resilience because each process has a protected memory
space, and when the process terminates, all resources, including memory and file
descriptors, are freed up, reducing resource leaks. On the other hand, threads share
resources and can communicate easily through shared variables and can cooperate by
sharing access to files and other resources. Threads give parallelism through worker pools
and other abstractions, which is useful in multicore processors.

ZeroMQ
Sockets, named pipes, and shared memory are the means by which inter-process
communication take place. They act as the transport layers for the message passing process
that makes up most non-trivial applications. Concurrency primitives such as mutexes and
condition variables are used to manage shared access and coordinate work between threads
running inside the same process. Multithreaded programming is notoriously difficult, and
sockets and named pipes come with their own set of gotchas. A higher-level API is needed
to abstract the complex details of asynchronous message passing. Enter ZeroMQ.
ZeroMQ is an asynchronous messaging library that acts like a concurrency framework. It
has facilities for in-process, inter-process, TCP, and multicast transports, as well as bindings
for various programming languages, including C, C++, Go, and Python. Those bindings,
along with ZeroMQ's socket-based abstractions, allow teams to easily mix programming
languages within the same distributed application. Support for common messaging patterns
such as request/reply, publish/subscribe, and parallel pipeline is also built into the library.
The zero in ZeroMQ stands for zero cost, while the MQ part stands for message queue.
We will explore both inter-process and in-process message-based communication using
ZeroMQ. Let's start by installing ZeroMQ for Python.

Getting pyzmq
We are going to use ZeroMQ's official Python binding for the following exercises. I
recommend installing this pyzmq package inside a new virtual environment. Creating a



Python virtual environment is easy if you already have conda on your system. Here are the
steps for provisioning the necessary virtual environment using conda:

1. Navigate to the zeromq directory containing the examples:
(base) $ cd MELP/Chapter17/zeromq

2. Create a new virtual environment named zeromq:
(base) $ conda create –-name zeromq python=3.9 pyzmq

3. Activate your new virtual environment:
(base) $ source activate zeromq

4. Check that the version of Python is 3.9:
(zeromq) $ python –-version

5. List the packages that have been installed in your environment:
(zeromq) $ conda list

If you see pyzmq and its dependencies in the list of packages, then you are now ready to run
the following exercises.

Messaging between processes
We will begin our exploration of ZeroMQ with a simple echo server. The server expects a
name in the form of a string from a client and replies with Hello <name>. The code is in
MELP/Chapter17/zeromq/server.py:

import time

import zmq

context = zmq.Context()

socket = context.socket(zmq.REP)

socket.bind("tcp://*:5555")

while True:

    # Wait for next request from client

    message = socket.recv()

    print(f"Received request: {message}")

    # Do some 'work'

    time.sleep(1)

    # Send reply back to client

    socket.send(b"Hello {message}")

The server process creates a socket of the REP type for its response, binds that socket to port
5555, and waits for messages. A 1-second sleep is used to simulate some work being done
in-between the time when a request is received and a reply is sent back.
The code for the echo client is in MELP/Chapter17/zeromq/client.py:

import zmq

def main(who):

    context = zmq.Context()



    #  Socket to talk to server

    print("Connecting to hello echo server…")

    socket = context.socket(zmq.REQ)

    socket.connect("tcp://localhost:5555")

    #  Do 5 requests, waiting each time for a response

    for request in range(5):

        print(f"Sending request {request} …")

        socket.send(b"{who}")

        # Get the reply.

        message = socket.recv()

        print(f"Received reply {request} [ {message} ]")

if __name__ == '__main__':

    import sys

    if len(sys.argv) != 2:

        print("usage: client.py <username>")

        raise SystemExit

    main(sys.argv[1])

The client process takes a username as a command-line argument. The client creates 
a socket of the REQ type for requests, connects to the server process listening on port 5555,
and begins sending messages containing the username that was passed in. Like
socket.recv() in the server, socket.recv() in the client blocks until a message arrives in
the queue.
To see the echo server and client code in action, activate your zeromq virtual environment
and run the planets.sh script from the MELP/Chapter17/zeromq directory:

(zeromq) $ ./planets.sh

The planets.sh script spawns three client processes called Mars, Jupiter, and Venus. We
can see that the requests from the three clients are interleaved because each client waits for
a reply from the server before sending its next request. Since each client sends five
requests, we should receive a total of 15 replies from the server. Message-based IPC is
remarkably easy with ZeroMQ. Now, let's use Python's built-in asyncio module, along with
ZeroMQ, to do in-process messaging.

Messaging within processes
The asyncio module was introduced in version 3.4 of Python. It adds a pluggable
event loop for executing single-threaded concurrent code using coroutines. Coroutines
(also known as green threads) in Python are declared with the async/await syntax, which
has been adopted from C#. They are much lighter-weight than POSIX threads and work
more like resumable functions. Because coroutines operate in the single-threaded context of
an event loop, we can use pyzmq in conjunction with asyncio for in-process socket-based
messaging.



Here is a slightly modified version of an example of coroutines taken from the 
https://github.com/zeromq/pyzmq repository:

import time

import zmq

from zmq.asyncio import Context, Poller

import asyncio

url = 'inproc://#1'

ctx = Context.instance()

async def receiver():

    """receive messages with polling"""

    pull = ctx.socket(zmq.PAIR)

    pull.connect(url)

    poller = Poller()

    poller.register(pull, zmq.POLLIN)

    while True:

        events = await poller.poll()

        if pull in dict(events):

            print("recving", events)

            msg = await pull.recv_multipart()

            print('recvd', msg)

async def sender():

    """send a message every second"""

    tic = time.time()

    push = ctx.socket(zmq.PAIR)

    push.bind(url)

    while True:

        print("sending")

        await push.send_multipart([str(time.time() -
tic).encode('ascii')])

        await asyncio.sleep(1)

asyncio.get_event_loop().run_until_complete(

    asyncio.wait(

        [

            receiver(),

            sender(),

        ]

    )

)

Notice that the receiver() and sender() coroutines share the same context. The inproc
transport method specified in the url part of the socket is meant for inter-thread
communications and is much faster than the tcp transport we used in the previous example.
The PAIR pattern connects two sockets exclusively. Like the inproc transport, this
messaging pattern only works in-process and is intended for signaling between threads.

https://github.com/zeromq/pyzmq


Neither the receiver() or sender() coroutines returns. The asyncio event loop alternates
between the two coroutines, suspending and resuming each on blocking or completing I/O.
To run the coroutines example from your active zeromq virtual environment, use the
following command:

(zeromq) $ python coroutines.py

sender() sends timestamps to receiver(), which displays them. Use Ctrl + C to terminate
the process. Congratulations! You have just witnessed in-process asynchronous messaging
without the use of explicit threads. There is much more to say and learn about coroutines
and asyncio. This example was only meant to give you a taste of what is now possible with
Python when paired with ZeroMQ. Let's leave single-threaded event loops behind for the
time being and get back to the subject of Linux.

Scheduling
The second big topic I want to cover in this chapter is scheduling. The Linux scheduler has
a queue of threads that are ready to run, and its job is to schedule them on CPUs as they
become available. Each thread has a scheduling policy that may be time-shared or real-
time. The time-shared threads have a niceness value that increases or reduces their
entitlement to CPU time. The real-time threads have priority in that a higher priority thread
will preempt a lower one. The scheduler works with threads, not processes. Each thread is
scheduled regardless of which process it is running in.
The scheduler runs when any of the following occurs:

A thread is blocked by calling sleep() or another blocking system call
A time-shared thread exhausts its time slice
An interruption causes a thread to be unblocked, for example, because of 
I/O completing

For background information on the Linux scheduler, I recommend that you read the chapter
on process scheduling in Linux Kernel Development, 3rd edition, by Robert Love.

Fairness versus determinism
I have grouped the scheduling policies into two categories: time-shared and real-time.
Time-shared policies are based on the principal of fairness. They are designed to make sure
that each thread gets a fair amount of processor time and that no thread can hog the system.
If a thread runs for too long, it is put to the back of the queue so that others can have a go.
At the same time, a fairness policy needs to adjust to threads that are doing a lot of work
and give them the resources to get the job done. Time-shared scheduling is good because of
the way it automatically adjusts to a wide range of workloads.



On the other hand, if you have a real-time program, fairness is not helpful. In this case, you
want a policy that is deterministic, which will give you at least minimal guarantees that
your real-time threads will be scheduled at the right time so that they don't miss 
their deadlines. This means that a real-time thread must preempt time-shared threads. Real-
time threads also have a static priority that the scheduler can use to choose between them
when there are several of them to run at once. The Linux real-time scheduler implements a
fairly standard algorithm that runs the highest priority real-time thread. Most RTOS
schedulers are also written in this way.
Both types of thread can coexist. Those requiring deterministic scheduling are scheduled
first, and any remaining time is divided between the time-shared threads.

Time-shared policies
Time-shared policies are designed for fairness. From Linux 2.6.23 onward, the scheduler
that's been used has been the Completely Fair Scheduler (CFS). It does not use timeslices
in the normal sense of the word. Instead, it calculates a running tally of the length of time a
thread would be entitled to run if it had its fair share of CPU time, and it balances that with
the actual amount of time it has run for. If it exceeds its entitlement and there are other
time-shared threads waiting to run, the scheduler will suspend the thread and run a waiting
thread instead.
The time-shared policies are as follows:

SCHED_NORMAL (also known as SCHED_OTHER): This is the default policy. The vast
majority of Linux threads use this policy.
SCHED_BATCH: This is similar to SCHED_NORMAL, except that threads are scheduled with
a larger granularity; that is, they run for longer but have to wait longer until they are
scheduled again. The intention is to reduce the number of context switches for
background processing (batch jobs) and reduce the amount of CPU cache churn.
SCHED_IDLE: These threads are run only when there are no threads from any other
policy that are ready to run. It is the lowest possible priority.

There are two pairs of functions you can use to get and set the policy and priority of a
thread. The first pair takes a PID as a parameter and affects the main thread in a process:

struct sched_param {

      ...

      int sched_priority;

      ...

};

int sched_setscheduler(pid_t pid, int policy,

      const struct sched_param *param);

int sched_getscheduler(pid_t pid);



The second pair operates on pthread_t and can change the parameters of the other threads
in a process:

int pthread_setschedparam(pthread_t thread, int policy,

      const struct sched_param *param);

int pthread_getschedparam(pthread_t thread, int *policy,

      struct sched_param *param);

See the sched(7) man page for more on thread policies and priorities. Now that we know
what time-shared policies and priorities are, let's talk about niceness.
Niceness
Some time-shared threads are more important than others. You can indicate this with the
nice value, which multiplies a thread's CPU entitlement by a scaling factor. The name
comes from the function call, nice(2), which has been part of Unix since the early days. A
thread becomes nice by reducing its load on the system or moving in the opposite direction
by increasing it. The range of values is from 19, which is really nice, to -20, which is really
not nice. The default value is 0, which is averagely nice, or so-so.
The nice value can be changed for SCHED_NORMAL and SCHED_BATCH threads. To reduce
niceness, which increases the CPU load, you need the CAP_SYS_NICE capability, which is
available to the root user. See the capabilities(7) man page for more information on
capabilities.
Almost all the documentation for functions and commands that change the nice value
(nice(2) and the nice and renice commands) talk in terms of processes. However, it
really relates to threads. As we mentioned in the preceding section, you can use a TID in
place of a PID to change the nice value of an individual thread. One other discrepancy in
the standard descriptions of nice is this: the nice value is referred to as the priority of a
thread (or sometimes, mistakenly, a process). I believe this is misleading and confuses the
concept with real-time priority, which is a completely different thing.

Real-time policies
Real-time policies are intended for determinism. The real-time scheduler will always run
the highest priority real-time thread that is ready to run. Real-time threads always preempt
timeshare threads. In essence, by selecting a real-time policy over a timeshare policy, you
are saying that you have inside knowledge of the expected scheduling of this thread and
wish to override the scheduler's built-in assumptions.
There are two real-time policies:

SCHED_FIFO: This is a run to completion algorithm, which means that once the thread
starts to run, it will continue until it is preempted by a higher priority real-time thread,
it is blocked in a system call, or until it terminates (completes).
SCHED_RR: This a round robin algorithm that will cycle between threads of the same
priority if they exceed their time slice, which is 100 ms by default. Since Linux 3.9, it
has been possible to control the timeslice value through



/proc/sys/kernel/sched_rr_timeslice_ms. Apart from this, it behaves in the same
way as SCHED_FIFO.

Each real-time thread has a priority in the range of 1 to 99, with 99 being the highest.
To give a thread a real-time policy, you need CAP_SYS_NICE, which is given only to the root
user by default.
One problem with real-time scheduling, both in terms of Linux and elsewhere, is that a
thread that becomes compute bound, often because a bug has caused it to loop indefinitely,
will prevent real-time threads of a lower priority from running along with all the timeshare
threads. In this case, the system becomes erratic and may lock up completely. There are a
couple of ways to guard against this possibility.
First, since Linux 2.6.25, the scheduler has, by default, reserved 5% of its CPU time for
non-real-time threads so that even a runaway real-time thread cannot completely halt the
system. It is configured via two kernel controls:

/proc/sys/kernel/sched_rt_period_us

/proc/sys/kernel/sched_rt_runtime_us

They have default values of 1,000,000 (1 second) and 950,000 (950 ms), respectively,
which means that every second, 50 ms is reserved for non-real-time processing. If you want
real-time threads to be able to take 100%, then set sched_rt_runtime_us to -1.
The second option is to use a watchdog, either hardware or software, to monitor the
execution of key threads and take action when they begin to miss deadlines. I mentioned
watchdogs in Chapter 13, Starting Up – The init Program.

Choosing a policy
In practice, time-shared policies satisfy the majority of computing workloads. Threads that
are I/O-bound spend a lot of time blocked and always have some spare entitlement in hand.
When they are unblocked, they will be scheduled almost immediately. Meanwhile, CPU-
bound threads will naturally take up any CPU cycles left over. Positive nice values can be
applied to the less important threads and negative values to the more important ones.
Of course, this is only average behavior; there are no guarantees that this will always be the
case. If more deterministic behavior is needed, then real-time policies will be required. The
things that mark out a thread as being real time are as follows:

It has a deadline by which it must generate an output.
Missing the deadline would compromise the effectiveness of the system.
It is event-driven.
It is not compute-bound.



Examples of real-time tasks include the classic robot arm servo controller, multimedia
processing, and communication processing. I will discuss real-time system design later in
Chapter 21, Real-Time Programming.

Choosing a real-time priority
Choosing real-time priorities that work for all expected workloads is a tricky business and a
good reason to avoid real-time policies in the first place.
The most widely used procedure for choosing priorities is known as Rate Monotonic
Analysis (RMA), after the 1973 paper by Liu and Layland. It applies to real-time systems
with periodic threads, which is a very important class. Each thread has a period and a
utilization, which is the proportion of the period it will be executing. The goal is to balance
the load so that all the threads can complete their execution phase before the next period.
RMA states that this can be achieved if the following occur:

The highest priorities are given to the threads with the shortest periods.
The total utilization is less than 69%.

The total utilization is the sum of all the individual utilizations. It also makes the
assumption that the interaction between threads or the time spent blocked on mutexes and
the like is negligible.

Summary
The long Unix heritage that is built into Linux and the accompanying C libraries provides
almost everything you need in order to write stable and resilient embedded applications.
The issue is that for every job, there are at least two ways to achieve the end you desire.
In this chapter, I focused on two aspects of system design: partitioning into separate
processes, each with one or more threads to get the job done, and scheduling those threads.
I hope that I shed some light on this and have given you the basis to study them further.
In the next chapter, I will examine another important aspect of system design: 
memory management.

Further reading
The following resources provide further information about the topics that were introduced
in this chapter:

The Art of Unix Programming, by Eric Steven Raymond
Linux System Programming, 2nd edition, by Robert Love
Linux Kernel Development, 3rd edition, by Robert Love



The Linux Programming Interface, by Michael Kerrisk
UNIX Network Programming, Volume 2: Interprocess Communications, 2nd Edition,
by W. Richard Stevens
Programming with POSIX Threads, by David R. Butenhof
Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment, by
C. L. Liu and James W. Layland, Journal of ACM, 1973, vol 20, no 1, pp. 46-61



Chapter 18: Managing Memory
This chapter covers issues related to memory management, which is an important topic for
any Linux system but especially for embedded Linux, where system memory is usually in
limited supply. After a brief refresher on virtual memory, I will show you how to measure
memory usage, how to detect problems with memory allocation, including memory leaks,
and what happens when you run out of memory. You will have to understand the tools that
are available, from simple tools such as free and top, to complex ones such as mtrace and
Valgrind.
We will learn the difference between kernel and user space memory, and how the kernel
maps physical pages of memory to the address space of a process. Then we will locate and
read the memory maps for individual processes under the proc filesystem. We will see how
the mmap system call can be used to map a program's memory to a file, so that it can allocate
memory in bulk or share it with another process. In the second half of this chapter, we will
use ps to measure per-process memory usage before moving on to more accurate tools such
as smem and ps_mem.
In this chapter, we will cover the following topics:

Virtual memory basics
Kernel space memory layout
User space memory layout
The process memory map
Swapping
Mapping memory with mmap
How much memory does my application use?
Per-process memory usage
Identifying memory leaks
Running out of memory

Technical requirements
To follow along with the examples, make sure you have the following:

A Linux-based host system with gcc, make, top, procps, valgrind, and smem installed

All of these tools are available on most popular Linux distributions (such as Ubuntu, Arch,
and so on).
All of the code for this chapter can be found in the Chapter18 folder in the book's GitHub
repository: https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-

https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


Third-Edition.

Virtual memory basics
To recap, Linux configures the memory management unit (MMU) of the CPU to present
a virtual address space to a running program that begins at zero and ends at the highest
address, 0xffffffff, on a 32-bit processor. This address space is divided into pages of 4
KiB by default. If 4 KiB pages are too small for your application, then you can configure
the kernel to use HugePages, reducing the amount of system resources needed to access
page table entries and increasing the Translation Lookaside Buffer (TLB) hit ratio.
Linux divides this virtual address space into an area for applications, called user space, and
an area for the kernel, called kernel space. The split between the two is set by a kernel
configuration parameter named PAGE_OFFSET. In a typical 32-bit embedded system,
PAGE_OFFSET is 0xc0000000, giving the lower 3 gigabytes to user space and the top
gigabyte to kernel space. The user address space is allocated per process so that each
process runs in a sandbox, separated from the others. The kernel address space is the same
for all processes, as there is only one kernel.
Pages in this virtual address space are mapped to physical addresses by the MMU, which
uses page tables to perform the mapping.
Each page of virtual memory may be unmapped or mapped as follows:

Unmapped, so that trying to access these addresses will result in a SIGSEGV.
Mapped to a page of physical memory that is private to the process.
Mapped to a page of physical memory that is shared with other processes.
Mapped and shared with a copy on write (CoW) flag set: a write is trapped in the
kernel, which makes a copy of the page and maps it to the process in place of the
original page before allowing the write to take place.
Mapped to a page of physical memory that is used by the kernel.

The kernel may additionally map pages to reserved memory regions, for example to access
registers and memory buffers in device drivers.
An obvious question is this: why do we do it this way instead of simply referencing
physical memory directly, as a typical RTOS would?
There are numerous advantages to virtual memory, some of which are described here:

Invalid memory accesses are trapped and applications are alerted by SIGSEGV.
Processes run in their own memory space, isolated from other processes.
Efficient use of memory through the sharing of common code and data, for example,
in libraries.
The possibility of increasing the apparent amount of physical memory by adding swap
files, although swapping on embedded targets is rare.

https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


These are powerful arguments, but I have to admit that there are some disadvantages as
well. It is difficult to determine the actual memory budget of an application, which is one of
the main concerns of this chapter. The default allocation strategy is to over-commit, which
leads to tricky out-of-memory situations, which I will also discuss later in the Running out
of memory section. Finally, the delays introduced by the memory management code in
handling exceptions—page faults—make the system less deterministic, which is important
for real-time programs. I will cover this in Chapter 21, Real-Time Programming.
Memory management is different for kernel space and user space. The upcoming sections
describe the essential differences and the things you need to know.

Kernel space memory layout
Kernel memory is managed in a fairly straightforward way. It is not demand-paged, which
means that for every allocation using kmalloc() or similar function, there is real physical
memory. Kernel memory is never discarded or paged out.
Some architectures show a summary of the memory mapping at boot time in the kernel log
messages. This trace is taken from a 32-bit Arm device (a BeagleBone Black):

Memory: 511MB = 511MB total

Memory: 505980k/505980k available, 18308k reserved, 0K highmem

Virtual kernel memory layout:

    vector  : 0xffff0000 - 0xffff1000  (   4 kB)

    fixmap  : 0xfff00000 - 0xfffe0000  ( 896 kB)

    vmalloc : 0xe0800000 - 0xff000000  ( 488 MB)

    lowmem  : 0xc0000000 - 0xe0000000  ( 512 MB)

    pkmap   : 0xbfe00000 - 0xc0000000  (   2 MB)

    modules : 0xbf800000 - 0xbfe00000  (   6 MB)

      .text : 0xc0008000 - 0xc0763c90  (7536 kB)

      .init : 0xc0764000 - 0xc079f700  ( 238 kB)

      .data : 0xc07a0000 - 0xc0827240  ( 541 kB)

       .bss : 0xc0827240 - 0xc089e940  ( 478 kB)

The figure of 505,980 KiB available is the amount of free memory the kernel sees when it
begins execution but before it begins making dynamic allocations.
Consumers of kernel space memory include the following:

The kernel itself, in other words, the code and data loaded from the kernel image file at
boot time. This is shown in the preceding kernel log in the .text, .init, .data, and
.bss. segments The .init segment is freed once the kernel has completed
initialization.
Memory allocated through the slab allocator, which is used for kernel data structures
of various kinds. This includes allocations made using kmalloc(). They come from
the region marked lowmem.



Memory allocated via vmalloc(), usually for larger chunks of memory than is
available through kmalloc(). These are in the vmalloc area.
Mapping for device drivers to access registers and memory belonging to various bits
of hardware, which you can see by reading /proc/iomem. These also come from the
vmalloc area, but since they are mapped to physical memory that is outside of main
system memory, they do not take up any real memory.
Kernel modules, which are loaded into the area marked modules.
Other low-level allocations that are not tracked anywhere else.

Now that we know the layout of memory in kernel space, let's find out how much memory
the kernel is actually using.

How much memory does the kernel use?
Unfortunately, there isn't a precise answer to the question of how much memory the kernel
uses, but what follows is as close as we can get.
Firstly, you can see the memory taken up by the kernel code and data in the kernel log
shown previously, or you can use the size command, as follows:

$ arm-poky-linux-gnueabi-size vmlinux

text data bss dec hex filename

9013448 796868 8428144 18238460 1164bfc vmlinux

Usually, the amount of memory taken by the kernel for the static code and data segments
shown here is small when compared to the total amount of memory. If that is not the case,
you need to look through the kernel configuration and remove the components that you
don't need. An effort to allow building small kernels known as Linux Kernel Tinification
had been making good progress until the project stalled, and Josh Triplett's patches were
eventually removed from the linux-next tree in 2016. Now, your best bet at reducing the
kernel's in-memory size is Execute-in-Place (XIP) where you trade RAM for flash
(https://lwn.net/Articles/748198/).
You can get more information about memory usage by reading /proc/meminfo:

# cat /proc/meminfo

MemTotal: 509016 kB

MemFree: 410680 kB

Buffers: 1720 kB

Cached: 25132 kB

SwapCached: 0 kB

Active: 74880 kB

Inactive: 3224 kB

Active(anon): 51344 kB

Inactive(anon): 1372 kB

Active(file): 23536 kB

https://lwn.net/Articles/748198/


Inactive(file): 1852 kB

Unevictable: 0 kB

Mlocked: 0 kB

HighTotal: 0 kB

HighFree: 0 kB

LowTotal: 509016 kB

LowFree: 410680 kB

SwapTotal: 0 kB

SwapFree: 0 kB

Dirty: 16 kB

Writeback: 0 kB

AnonPages: 51248 kB

Mapped: 24376 kB

Shmem: 1452 kB

Slab: 11292 kB

SReclaimable: 5164 kB

SUnreclaim: 6128 kB

KernelStack: 1832 kB

PageTables: 1540 kB

NFS_Unstable: 0 kB

Bounce: 0 kB

WritebackTmp: 0 kB

CommitLimit: 254508 kB

Committed_AS: 734936 kB

VmallocTotal: 499712 kB

VmallocUsed: 29576 kB

VmallocChunk: 389116 kB

There is a description of each of these fields on the manual page proc(5). The kernel
memory usage is the sum of the following:

Slab: The total memory allocated by the slab allocator
KernelStack: The stack space used when executing kernel code
PageTables: The memory used to store page tables
VmallocUsed: The memory allocated by vmalloc()

In the case of slab allocations, you can get more information by reading /proc/slabinfo.
Similarly, there is a breakdown of allocations in /proc/vmallocinfo for the vmalloc area.
In both cases, you need detailed knowledge of the kernel and its subsystems in order to see
exactly which subsystem is making the allocations and why, which is beyond the scope of
this discussion.
With modules, you can use lsmod to find out the memory space taken up by the code and
data:

# lsmod

Module Size Used by



g_multi 47670 2

libcomposite 14299 1 g_multi

mt7601Usta 601404 0

This leaves the low-level allocations, of which there is no record, and that prevents us from
generating an accurate account of kernel space memory usage. This will appear as missing
memory when we add up all the kernel and user space allocations that we know about.
Measuring kernel space memory usage is complicated. The information in /proc/meminfo
is somewhat limited and the additional information provided by /proc/slabinfo and
/proc/vmallocinfo is difficult to interpret. User space offers better visibility into memory
usage by way of the process memory map.

User space memory layout
Linux employs a lazy allocation strategy for user space, only mapping physical pages of
memory when the program accesses it. For example, allocating a buffer of 1 MiB using
malloc(3) returns a pointer to a block of memory addresses but no actual physical memory.
A flag is set in the page table entries such that any read or write access is trapped by the
kernel. This is known as a page fault. Only at this point does the kernel attempt to find a
page of physical memory and add it to the page table mapping for the process. It is
worthwhile demonstrating this with a simple program, MELP/Chapter18/pagefault-demo:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/resource.h>

#define BUFFER_SIZE (1024 * 1024)

void print_pgfaults(void)

{

     int ret;

     struct rusage usage;

     ret = getrusage(RUSAGE_SELF, &usage);

     if (ret == -1) {

           perror("getrusage");

      } else {

           printf("Major page faults %ld\n", usage.ru_majflt);

           printf("Minor page faults %ld\n", usage.ru_minflt);

     }

}

int main(int argc, char *argv[])

{

     unsigned char *p;

     printf("Initial state\n");

     print_pgfaults();

     p = malloc(BUFFER_SIZE);



     printf("After malloc\n");

     print_pgfaults();

     memset(p, 0x42, BUFFER_SIZE);

     printf("After memset\n");

     print_pgfaults();

     memset(p, 0x42, BUFFER_SIZE);

     printf("After 2nd memset\n");

     print_pgfaults();

     return 0;

}

When you run it, you will see output like this:
Initial state

Major page faults 0

Minor page faults 172

After malloc

Major page faults 0

Minor page faults 186

After memset

Major page faults 0

Minor page faults 442

After 2nd memset

Major page faults 0

Minor page faults 442

There were 172 minor page faults encountered after initializing the program's environment
and a further 14 when calling getrusage(2) (these numbers will vary depending on the
architecture and the version of the C library you are using). The important part is the
increase when filling the memory with data: 442 - 186 = 256. The buffer is 1 MiB, which is
256 pages. The second call to memset(3) makes no difference because all the pages are now
mapped.
As you can see, a page fault is generated when the kernel traps an access to a page that has
not been mapped yet. In fact, there are two kinds of page faults: minor and major. With a
minor fault, the kernel just has to find a page of physical memory and map it to the process
address space, as shown in the preceding code. A major page fault occurs when the virtual
memory is mapped to a file, for example, using mmap(2), which I will describe shortly.
Reading from this memory means that the kernel not only has to find a page of memory and
map it in but also has to fill it with data from the file. Consequently, major faults are much
more expensive in terms of time and system resources.
While getrusage(2) offers useful metrics on minor and major page faults within 
a process, sometimes what we really want to see is an overall memory map of a process.

The process memory map



Each running process in user space has a process map that we can inspect. These memory
maps tell us how a program's memory is allocated and what shared libraries it is linked to.
You can see the memory map for a process through the proc filesystem. As an example,
here is the map for the init process, PID 1:

# cat /proc/1/maps

00008000-0000e000 r-xp 00000000 00:0b 23281745 /sbin/init

00016000-00017000 rwxp 00006000 00:0b 23281745 /sbin/init

00017000-00038000 rwxp 00000000 00:00 0        [heap]

b6ded000-b6f1d000 r-xp 00000000 00:0b 23281695 /lib/libc-2.19.so

b6f1d000-b6f24000 ---p 00130000 00:0b 23281695 /lib/libc-2.19.so

b6f24000-b6f26000 r-xp 0012f000 00:0b 23281695 /lib/libc-2.19.so

b6f26000-b6f27000 rwxp 00131000 00:0b 23281695 /lib/libc-2.19.so

b6f27000-b6f2a000 rwxp 00000000 00:00 0

b6f2a000-b6f49000 r-xp 00000000 00:0b 23281359 /lib/ld-2.19.so

b6f4c000-b6f4e000 rwxp 00000000 00:00 0

b6f4f000-b6f50000 r-xp 00000000 00:00 0        [sigpage]

b6f50000-b6f51000 r-xp 0001e000 00:0b 23281359 /lib/ld-2.19.so

b6f51000-b6f52000 rwxp 0001f000 00:0b 23281359 /lib/ld-2.19.so

beea1000-beec2000 rw-p 00000000 00:00 0        [stack]

ffff0000-ffff1000 r-xp 00000000 00:00 0        [vectors]

The first two columns show the start and end virtual addresses and the permissions for each
mapping. The permissions are shown here:

r: Read
w: Write
x: Execute
s: Shared
p: Private (copy on write)

If the mapping is associated with a file, the filename appears in the final column, and
columns three, four, and five contain the offset from the start of the file, the block device
number, and the inode of the file. Most of the mappings are to the program itself and the
libraries it is linked with. There are two areas where the program can allocate memory,
marked [heap] and [stack]. Memory allocated using malloc comes from the former
(except for very large allocations, which we will come to later); allocations on the stack
come from the latter. The maximum size of both areas is controlled by the process's ulimit:

Heap: ulimit -d, default unlimited
Stack: ulimit -s, default 8 MiB

Allocations that exceed the limit are rejected by SIGSEGV.
When running out of memory, the kernel may decide to discard pages that are mapped to a
file and are read-only. If that page is accessed again, it will cause a major page fault and be



read back in from the file.

Swapping
The idea of swapping is to reserve some storage where the kernel can place pages of
memory that are not mapped to a file, freeing up the memory for other uses. It increases the
effective size of physical memory by the size of the swap file. It is not a panacea: there is a
cost to copying pages to and from a swap file, which becomes apparent on a system that has
too little real memory for the workload it is carrying and so swapping becomes the main
activity. This is sometimes known as disk thrashing.
Swap is seldom used on embedded devices because it does not work well with flash
storage, where constant writing would wear it out quickly. However, you may want to
consider swapping to compressed RAM (zram).

Swapping to compressed memory (zram)
The zram driver creates RAM-based block devices named /dev/zram0, /dev/zram1, and
so on. Pages written to these devices are compressed before being stored. With compression
ratios in the range of 30% to 50%, you can expect an overall increase in free memory of
about 10% at the expense of more processing and a corresponding increase in power usage.
To enable zram, configure the kernel with these options:

CONFIG_SWAP

CONFIG_CGROUP_MEM_RES_CTLR

CONFIG_CGROUP_MEM_RES_CTLR_SWAP

CONFIG_ZRAM

Then, mount zram at boot time by adding this to /etc/fstab:
/dev/zram0 none swap defaults zramsize=<size in bytes>,

swapprio=<swap partition priority>

You can turn swap on and off using these commands:
# swapon /dev/zram0

# swapoff /dev/zram0

Swapping memory out to zram is better than swapping out to flash storage, but neither
technique is a substitute for adequate physical memory.
User space processes depend on the kernel to manage virtual memory for them. Sometimes
a program wants greater control over its memory map than the kernel can offer. There is a
system call that lets us map memory to a file for more direct access from user space.

Mapping memory with mmap



A process begins life with a certain amount of memory mapped to the text (the code) and
data segments of the program file, together with the shared libraries that it is linked with. It
can allocate memory on its heap at runtime using malloc(3) and on the stack through
locally scoped variables and memory allocated through alloca(3). It may also load
libraries dynamically at runtime using dlopen(3). All of these mappings are taken care of
by the kernel. However, a process can also manipulate its memory map in an explicit way
using mmap(2):

void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

This function maps length bytes of memory from the file with the fd descriptor, starting at
offset in the file, and returns a pointer to the mapping, assuming it is successful. Since the
underlying hardware works in pages, length is rounded up to the nearest whole number of
pages. The protection parameter, prot, is a combination of read, write, and execute
permissions and the flags parameter contains at least MAP_SHARED or MAP_PRIVATE. There
are many other flags, which are described in the mmap manpage.
There are many things you can do with mmap. I will show some of them in the 
upcoming sections.

Using mmap to allocate private memory
You can use mmap to allocate an area of private memory by setting MAP_ANONYMOUS in the
flags parameter and setting the file descriptor fd to -1. This is similar to allocating
memory from the heap using malloc, except that the memory is page-aligned and in
multiples of pages. The memory is allocated in the same area as that used for libraries. In
fact, this area is referred to by some as the mmap area for this reason.
Anonymous mappings are better for large allocations because they do not pin down the
heap with chunks of memory, which would make fragmentation more likely. Interestingly,
you will find that malloc (in glibc at least) stops allocating memory from the heap for
requests over 128 KiB and uses mmap in this way, so in most cases, just using malloc is the
right thing to do. The system will choose the best way of satisfying the request.

Using mmap to share memory
As we saw in Chapter 17, Learning About Processes and Threads, POSIX shared memory
requires mmap to access the memory segment. In this case, you set the MAP_SHARED flag and
use the file descriptor from shm_open():

int shm_fd;

char *shm_p;

shm_fd = shm_open("/myshm", O_CREAT | O_RDWR, 0666);

ftruncate(shm_fd, 65536);

shm_p = mmap(NULL, 65536, PROT_READ | PROT_WRITE,



MAP_SHARED, shm_fd, 0);

Another process uses the same calls, filename, length, and flags to map to that memory
region for sharing. Subsequent calls to msync(2) control when updates to memory are
carried through to the underlying file.
Sharing memory via mmap also offers a straightforward way to read from and write to device
memory.

Using mmap to access device memory
As I mentioned in Chapter 11, Interfacing with Device Drivers, it is possible for a driver to
allow its device node to be memory mapped and share some of the device memory with an
application. The exact implementation is dependent on the driver.
One example is the Linux framebuffer, /dev/fb0. FPGAs such as the Xilinx Zynq series are
also accessed as memory via mmap from Linux. The framebuffer interface is defined in
/usr/include/linux/fb.h, including an ioctl function to get the size of the display and
the bits per pixel. You can then use mmap to ask the video driver to share the framebuffer
with the application and read and write pixels:

int f;

int fb_size;

unsigned char *fb_mem;

f = open("/dev/fb0", O_RDWR);

/* Use ioctl FBIOGET_VSCREENINFO to find the display

dimensions and calculate fb_size */

fb_mem = mmap(0, fb_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

/* read and write pixels through pointer fb_mem */

A second example is the streaming video interface, Video 4 Linux, version 2, or V4L2,
which is defined in /usr/include/linux/videodev2.h. Each video device has a node
named /dev/videoN, starting with /dev/video0. There is an ioctl function to ask the
driver to allocate a number of video buffers that you can mmap into user space. Then, it is
just a question of cycling the buffers and filling or emptying them with video data,
depending on whether you are playing back or capturing a video stream.
Now that we have covered memory layout and mapping, let's look at memory usage starting
with how to measure it.

How much memory does my application use?
As with kernel space, the different ways of allocating, mapping, and sharing user space
memory make it quite difficult to answer this seemingly simple question.
To begin, you can ask the kernel how much memory it thinks is available, which you can do
using the free command. Here is a typical example of the output:



   total used free shared buffers cached

Mem: 509016 504312 4704 0 26456 363860

-/+ buffers/cache: 113996 395020

Swap: 0 0 0

At first sight, this looks like a system that is almost out of memory with only 4,704 KiB
free out of 509,016 KiB: less than 1%. However, note that 26,456 KiB is in buffers and 
a whopping 363,860 KiB is in caches. Linux believes that free memory is wasted memory;
the kernel uses free memory for buffers and caches with the knowledge that they can be
shrunk when the need arises. Removing buffers and cache from the measurement provides
true free memory, which is 395,020 KiB: 77% of the total. When using free, the numbers
on the second line marked -/+ buffers/cache are the important ones.
You can force the kernel to free up caches by writing a number between 1 and 3 to 
/proc/sys/vm/drop_caches:

# echo 3 > /proc/sys/vm/drop_caches

The number is actually a bitmask that determines which of the two broad types of caches
you want to free: 1 for the page cache and 2 for the dentry and inode caches combined.
Since 1 and 2 are different bits, writing a 3 frees both types of caches. The exact roles of
these caches are not particularly important here, only that there is memory that the kernel is
using but that can be reclaimed at short notice.
The free command tells us how much memory is being used and how much is left. It
neither tells us which processes are using the unavailable memory nor in what proportions.
To measure that, we need other tools.

Per-process memory usage
There are several metrics to measure the amount of memory a process is using. I will begin
with the two that are easiest to obtain: the virtual set size (VSS) and the resident memory
size (RSS), both of which are available in most implementations of the ps and top
commands:

VSS: Called VSZ in the ps command and VIRT in top, this is the total amount 
of memory mapped by a process. It is the sum of all the regions shown in 
/proc/<PID>/map. This number is of limited interest since only part of the virtual
memory is committed to physical memory at any time.
RSS: Called RSS in ps and RES in top, this is the sum of memory that is mapped to
physical pages of memory. This gets closer to the actual memory budget of the
process, but there is a problem: if you add the RSS of all the processes, you will get an
overestimate of the memory in use because some pages will be shared.

Let's learn more about the top and ps commands.



Using top and ps
The versions of top and ps from BusyBox provide very limited information. The examples
that follow use the full version from the procps package.
The ps command shows VSS (VSZ) and RSS (RSS) with the options -Aly, or you can use
a custom format that includes vsz and rss, as shown here:

# ps -eo pid,tid,class,rtprio,stat,vsz,rss,comm

PID TID CLS RTPRIO STAT VSZ RSS COMMAND

1   1   TS -Ss 4496 2652 systemd

[…]

205 205 TS -Ss 4076 1296 systemd-journal

228 228 TS -Ss 2524 1396 udevd

581 581 TS -Ss 2880 1508 avahi-daemon

584 584 TS -Ss 2848 1512 dbus-daemon

590 590 TS -Ss 1332 680  acpid

594 594 TS -Ss 4600 1564 wpa_supplicant

Likewise, top shows a summary of the free memory and memory usage per process:
top - 21:17:52 up 10:04, 1 user, load average: 0.00, 0.01, 0.05

Tasks: 96 total, 1 running, 95 sleeping, 0 stopped, 0 zombie

%Cpu(s): 1.7 us, 2.2 sy, 0.0 ni, 95.9 id, 0.0 wa, 0.0 hi

KiB Mem: 509016 total, 278524 used, 230492 free, 25572 buffers

KiB Swap: 0 total, 0 used, 0 free, 170920 cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

595 root 20 0 64920 9.8m 4048 S 0.0 2.0 0:01.09 node

866 root 20 0 28892 9152 3660 S 0.2 1.8 0:36.38 Xorg

[…]

These simple commands give you a feel of the memory usage and provide the first
indication that you have a memory leak when you see that the RSS of a process keeps 
on increasing. However, they are not very accurate in the absolute measurements of
memory usage.

Using smem
In 2009, Matt Mackall began looking at the problem of accounting for shared pages in
process memory measurement and added two new metrics called unique set size, or USS,
and proportional set size, or PSS:

USS: This is the amount of memory that is committed to physical memory and is
unique to a process; it is not shared with any others. It is the amount of memory that
would be freed if the process were to terminate.
PSS: This splits the accounting of shared pages that are committed to physical
memory between all the processes that have them mapped. For example, if an area of



library code is 12 pages long and is shared by six processes, each will accumulate two
pages in PSS. Thus, if you add the PSS numbers for all processes, you will get the
actual amount of memory being used by those processes. In other words, PSS is the
number we have been looking for.

Information about PSS is available in /proc/<PID>/smaps, which contains additional
information for each of the mappings shown in /proc/<PID>/maps. Here is a section from
such a file that provides information on the mapping for the libc code segment:

b6e6d000-b6f45000 r-xp 00000000 b3:02 2444 /lib/libc-2.13.so

Size: 864 kB

Rss: 264 kB

Pss: 6 kB

Shared_Clean: 264 kB

Shared_Dirty: 0 kB

Private_Clean: 0 kB

Private_Dirty: 0 kB

Referenced: 264 kB

Anonymous: 0 kB

AnonHugePages: 0 kB

Swap: 0 kB

KernelPageSize: 4 kB

MMUPageSize: 4 kB

Locked: 0 kB

VmFlags: rd ex mr mw me

Note that the RSS is 264 KiB, but because it is shared between many other processes, the
PSS is only 6 KiB.
There is a tool named smem that collates information from the smaps files and 
presents it in various ways, including as pie or bar charts. The project page for smem is
https://www.selenic.com/smem/. It is available as a package in most desktop distributions.
However, since it is written in Python, installing it on an embedded target requires a Python
environment, which may be too much trouble for just one tool. To help with this, there is a
small program named smemcap that captures the state from /proc on the target and saves it
to a TAR file that can be analyzed later on the host computer. It is part of BusyBox, but it
can also be compiled from the smem source.
Running smem natively, as root, you will see these results:

# smem -t

PID User Command Swap USS PSS RSS

610 0 /sbin/agetty -s ttyO0 11 0 128 149 720

1236 0 /sbin/agetty -s ttyGS0 1 0 128 149 720

609 0 /sbin/agetty tty1 38400 0 144 163 724

578 0 /usr/sbin/acpid 0 140 173 680

819 0 /usr/sbin/cron 0 188 201 704

634 103 avahi-daemon: chroot hel 0 112 205 500

https://www.selenic.com/smem/


980 0 /usr/sbin/udhcpd -S /etc 0 196 205 568

[...]

836 0 /usr/bin/X :0 -auth /var 0 7172 7746 9212

583 0 /usr/bin/node autorun.js 0 8772 9043 10076

1089 1000 /usr/bin/python -O /usr/ 0 9600 11264 16388

--------------------------------------------------------------

53 6 0 65820 78251 146544

You can see from the last line of the output that in this case, the total PSS is about a half 
of the RSS.
If you don't have or don't want to install Python on your target, you can capture the state
using smemcap, again as root:

# smemcap > smem-bbb-cap.tar

Then, copy the TAR file to the host and read it using smem -S, although this time there is no
need to run as root:

$ smem -t -S smem-bbb-cap.tar

The output is identical to the output we get when running smem natively.

Other tools to consider
Another way to display PSS is via ps_mem (https://github.com/pixelb/ps_mem), which
prints much the same information but in a simpler format. It is also written 
in Python.
Android also has a tool that displays a summary of USS and PSS for each process, named
procrank, which can be cross-compiled for embedded Linux with a few small changes.
You can get the code from https://github.com/csimmonds/procrank_linux.
We now know how to measure per-process memory usage. Let's say we use the tools 
just shown to find the process that is the memory hog in our system. How do we then 
drill down into that process to figure out where it is going wrong? That is the topic of the
next section.

Identifying memory leaks
A memory leak occurs when memory is allocated but not freed when it is no longer needed.
Memory leakage is by no means unique to embedded systems, but it becomes an issue
partly because targets don't have much memory in the first place and partly because they
often run for long periods of time without rebooting, allowing the leaks to become 
a large puddle.
You will realize that there is a leak when you run free or top and see that free memory is
continually going down even if you drop caches, as shown in the preceding section. You
will be able to identify the culprit (or culprits) by looking at the USS and RSS per process.

https://github.com/pixelb/ps_mem
https://github.com/csimmonds/procrank_linux


There are several tools to identify memory leaks in a program. I will look at two: mtrace
and valgrind.

mtrace
mtrace is a component of glibc that traces calls to malloc, free, and related functions, and
identifies areas of memory not freed when the program exits. You need to call the mtrace()
function from within the program to begin tracing and then at runtime, write a path name to
the MALLOC_TRACE environment variable in which the trace information is written. If
MALLOC_TRACE does not exist or if the file cannot be opened, the mtrace hooks are not
installed. While the trace information is written in ASCII, it is usual to use the mtrace
command to view it.
Here is an example:

#include <mcheck.h>

#include <stdlib.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

    int j;

    mtrace();

    for (j = 0; j < 2; j++)

        malloc(100); /* Never freed:a memory leak */

    calloc(16, 16); /* Never freed:a memory leak */

    exit(EXIT_SUCCESS);

}

Here is what you might see when running the program and looking at the trace:
$ export MALLOC_TRACE=mtrace.log

$ ./mtrace-example

$ mtrace mtrace-example mtrace.log

Memory not freed:

-----------------

    Address Size Caller

0x0000000001479460 0x64 at /home/chris/mtrace-example.c:11

0x00000000014794d0 0x64 at /home/chris/mtrace-example.c:11

0x0000000001479540 0x100 at /home/chris/mtrace-example.c:15

Unfortunately, mtrace does not tell you about leaked memory while the program runs. It
has to terminate first.

Valgrind



Valgrind is a very powerful tool used to discover memory problems including leaks and
other things. One advantage is that you don't have to recompile the programs and libraries
that you want to check, although it works better if they have been compiled with the -g
option so that they include debug symbol tables. It works by running the program in an
emulated environment and trapping execution at various points. This leads to the big
downside of Valgrind, which is that the program runs at a fraction of normal speed, which
makes it less useful in testing anything with real-time constraints.

IMPORTANT NOTE
Incidentally, the name is often mispronounced: it says in the Valgrind FAQ that the grind
part is pronounced with a short i, as in grinned (rhymes with tinned) rather than grind
(rhymes with find). The FAQ, documentation, and downloads are available at
https://valgrind.org.
Valgrind contains several diagnostic tools:

memcheck: This is the default tool, and it detects memory leaks and general misuse of
memory.
cachegrind: This calculates the processor cache hit rate.
callgrind: This calculates the cost of each function call.
helgrind: This highlights the misuse of the Pthread API, including potential
deadlocks, and race conditions.
DRD: This is another Pthread analysis tool.
massif: This profiles the usage of the heap and stack.

You can select the tool you want with the -tool option. Valgrind runs on the major
embedded platforms: Arm (Cortex-A), PowerPC, MIPS, and x86 in 32-bit and 64-bit
variants. It is available as a package in both the Yocto Project and Buildroot.
To find our memory leak, we need to use the default memcheck tool, with the -–leak-
check=full option to print the lines where the leak was found:

$ valgrind --leak-check=full ./mtrace-example

==17235== Memcheck, a memory error detector

==17235== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et
al.==17235==Using Valgrind-3.10.0.SVN and LibVEX; rerun with -h for
copyright info

==17235== Command: ./mtrace-example

==17235==

==17235==

==17235== HEAP SUMMARY:

==17235== in use at exit: 456 bytes in 3 blocks

==17235== total heap usage: 3 allocs, 0 frees, 456 bytes allocated

==17235==

==17235== 200 bytes in 2 blocks are definitely lost in loss record

1 of 2==17235== at 0x4C2AB80: malloc (in
/usr/lib/valgrind/vgpreload_memcheck-linux.so)

https://valgrind.org/


==17235== by 0x4005FA: main (mtrace-example.c:12)

==17235==

==17235== 256 bytes in 1 blocks are definitely lost in loss record

2 of 2==17235== at 0x4C2CC70: calloc (in /usr/lib/valgrind/vgpreload
memcheck-linux so)

==17235== by 0x400613: main (mtrace-example.c:14)

==17235==

==17235== LEAK SUMMARY:

==17235== definitely lost: 456 bytes in 3 blocks

==17235== indirectly lost: 0 bytes in 0 blocks

==17235== possibly lost: 0 bytes in 0 blocks

==17235== still reachable: 0 bytes in 0 blocks

==17235== suppressed: 0 bytes in 0 blocks

==17235==

==17235== For counts of detected and suppressed errors, rerun with: -
v==17235== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from
0)

The output from Valgrind shows that two memory leaks were found in mtrace-example.c:
a malloc at line 12 and a calloc at line 14. The subsequent calls to free that are supposed
to accompany these two memory allocations are missing from the program. Left unchecked,
memory leaks in a long-running process may eventually result in the system running out of
memory.

Running out of memory
The standard memory allocation policy is to over-commit, which means that the kernel will
allow more memory to be allocated by applications than there is physical memory. Most of
the time, this works fine because it is common for applications to request more memory
than they really need. This also helps in the implementation of fork(2): it is safe to make a
copy of a large program because the pages of memory are shared with the copy on write
flag set. In the majority of cases, fork is followed by an exec function call, which unshares
the memory and then loads a new program.
However, there is always the possibility that a particular workload will cause a group of
processes to try to cash in on the allocations they have been promised simultaneously and
so demand more than there really is. This is an out of memory situation, or OOM. At this
point, there is no other alternative but to kill off processes until the problem goes away.
This is the job of the out of memory killer.
Before we get to that, there is a tuning parameter for kernel allocations in
/proc/sys/vm/overcommit_memory, which you can set to the following:

0: Heuristic over-commit
1: Always over-commit; never check
2: Always check; never over-commit



Option 0 is the default and is the best choice in the majority of cases.
Option 1 is only really useful if you run programs that work with large sparse arrays and
allocate large areas of memory but write to a small proportion of them. Such programs are
rare in the context of embedded systems.
Option 2, never over-commit, seems to be a good choice if you are worried about running
out of memory, perhaps in a mission or safety-critical application. It will fail allocations
that are greater than the commit limit, which is the size of swap space plus the total memory
multiplied by the overcommit ratio. The over-commit ratio is controlled by 
/proc/sys/vm/overcommit_ratio and has a default value of 50%.
As an example, suppose you have a device with 512 MB of system RAM and you set 
a really conservative ratio of 25%:

# echo 25 > /proc/sys/vm/overcommit_ratio

# grep -e MemTotal -e CommitLimit /proc/meminfo

MemTotal: 509016 kB

CommitLimit: 127252 kB

There is no swap, so the commit limit is 25% of MemTotal, as expected.
There is another important variable in /proc/meminfo, called Committed_AS. This is the
total amount of memory that is needed to fulfill all the allocations made so far. I found the
following on one system:

# grep -e MemTotal -e Committed_AS /proc/meminfo

MemTotal: 509016 kB

Committed_AS: 741364 kB

In other words, the kernel had already promised more memory than the available memory.
Consequently, setting overcommit_memory to 2 would mean that all allocations would fail
regardless of overcommit_ratio. To get to a working system, 
I would have to either install double the amount of RAM or severely reduce the number of
running processes, of which there were about 40.
In all cases, the final defense is oom-killer. It uses a heuristic method to calculate 
a badness score between 0 and 1,000 for each process and then terminates those with the
highest score until there is enough free memory. You should see something like this in the
kernel log:

[44510.490320] eatmem invoked oom-killer: gfp_mask=0x200da,

order=0, oom_score_adj=0

...

You can force an OOM event using echo f > /proc/sysrq-trigger.
You can influence the badness score for a process by writing an adjustment value to 
/proc/<PID>/oom_score_adj. A value of -1000 means that the badness score can never be
greater than zero and so it will never be killed; a value of +1000 means that it will always be
greater than 1,000 and so it will always be killed.



Summary
Accounting for every byte of memory used in a virtual memory system is just not possible.
However, you can find a fairly accurate figure for the total amount of free memory,
excluding that taken by buffers and the cache, using the free command. By monitoring it
over a period of time and with different workloads, you should become confident that it will
remain within a given limit.
When you want to tune memory usage or identify sources of unexpected allocations, there
are resources that give more detailed information. For kernel space, the most useful
information is in /proc: meminfo, slabinfo, and vmallocinfo.
When it comes to getting accurate measurements for user space, the best metric is PSS, 
as shown by smem and other tools. For memory debugging, you can get help from 
simple tracers such as mtrace, or you have the heavyweight option of the Valgrind
memcheck tool.
If you have concerns about the consequence of an OOM situation, you can fine-tune the
allocation mechanism via /proc/sys/vm/overcommit_memory and you can control the
likelihood of particular processes being killed though the oom_score_adj parameter.
The next chapter is all about debugging user space and kernel code using the GNU
debugger and the insights you can gain from watching code as it runs, including the
memory management functions I have described here.

Further reading
The following resources have further information on the topics introduced in this chapter:

Linux Kernel Development, 3rd Edition, by Robert Love
Linux System Programming, 2nd Edition, by Robert Love
Understanding the Linux VM Manager by Mel Gorman:
https://www.kernel.org/doc/gorman/pdf/understand.pdf
Valgrind 3.3 - Advanced Debugging and Profiling for Gnu/Linux Applications by J
Seward, N. Nethercote, and J. Weidendorfer

https://www.kernel.org/doc/gorman/pdf/understand.pdf


Section 4: 
Debugging and Optimizing Performance
Section 4 teaches the reader how to make effective use of the many debug and profiling
tools that Linux has to offer in order to detect problems and identify bottlenecks. Chapter
19 focuses solely on the traditional approach of watching code execution through a
debugger, which in Linux's case is the GNU Debugger (GDB). Chapter 20 examines
various profilers and tracers, beginning with top then moving on to perf, until eventually
progressing all the way down to strace.
This part of the book comprises the following chapters:

Chapter 19, Debugging with GDB
Chapter 20, Profiling and Tracing
Chapter 21, Real-Time Programming



Chapter 19: Debugging with GDB
Bugs happen. Identifying and fixing them is part of the development process. There are
many different techniques for finding and characterizing program defects, including static
and dynamic analysis, code review, tracing, profiling, and interactive debugging. I will look
at tracers and profilers in the next chapter, but here I want to concentrate on the traditional
approach of watching code execution through a debugger, which in our case is the GNU
Project Debugger (GDB). GDB is a powerful and flexible tool. You can use it to debug
applications, examine the postmortem files (core files) that are created after a program
crash, and even step through kernel code.
In this chapter, we will cover the following topics:

The GNU debugger
Preparing to debug
Debugging applications
Just-in-time debugging
Debugging forks and threads
Core files
GDB user interfaces
Debugging kernel code

Technical requirements
To follow along with the examples, make sure you have the following:

Linux-based host system with a minimum of 60 GB of available disk space
Buildroot 2020.02.9 LTS release
Yocto 3.1 (Dunfell) LTS release
Etcher for Linux
MicroSD card reader and card
USB to TTL 3.3V serial cable
Raspberry Pi 4
5V 3A USB-C power supply
Ethernet cable and port for network connectivity
BeagleBone Black
5V 1A DC power supply



You should have already installed the 2020.02.9 LTS release of Buildroot for Chapter 6,
Selecting a Build System. If you have not, then refer to the System requirements section of
the The Buildroot user manual (https://buildroot.org/downloads/manual/manual.html)
before installing Buildroot on your Linux host according to the instructions from Chapter 6.
You should have already installed the 3.1 (Dunfell) LTS release of Yocto for Chapter 6,
Selecting a Build System. If you have not, then refer to the Compatible Linux Distribution
and Build Host Packages sections of the Yocto Project Quick Build guide
(https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html)
before installing Yocto on your Linux host according to the instructions from Chapter 6.
All of the code for this chapter can be found in the Chapter19 folder of the book's GitHub
repository: https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-
Third-Edition.

The GNU debugger
GDB is a source-level debugger for compiled languages, primarily C and C++, although
there is also support for a variety of other languages, such as Go and Objective-C. You
should read the notes for the version of GDB you are using to find out the current status of
support for the various languages.
The project website is https://www.gnu.org/software/gdb/ and it contains a lot of useful
information, including the GDB user manual, Debugging with GDB.
Out of the box, GDB has a command-line user interface that some people find off-putting,
although in reality, it is easy to use with a little practice. If command-line interfaces are not
to your liking, there are plenty of frontend user interfaces to GDB, and I will describe three
of them later in this chapter.

Preparing to debug
You need to compile the code you want to debug with debug symbols. GCC offers two
options for this: -g and -ggdb. The latter adds debug information that is specific to GDB,
whereas the former generates information in an appropriate format for whichever target
operating system you are using, making it the more portable option. In our particular case,
the target operating system is always Linux, and it makes little difference whether you use -
g or -ggdb. Of more interest is the fact that both options allow you to specify the level of
debug information, from 0 to 3:

0: This produces no debug information at all and is equivalent to omitting the -g or -
ggdb switch.
1: This produces minimal information, but includes function names and external
variables, which is enough to generate a backtrace.

https://buildroot.org/downloads/manual/manual.html
https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition
https://www.gnu.org/software/gdb/


2: This is the default and includes information about local variables and line numbers
so that you can perform source-level debugging and single-step through the code.
3: This includes extra information which, among other things, means that GDB can
handle macro expansions correctly.

In most cases, -g suffices: reserve -g3 or -ggdb3 if you are having problems stepping
through code, especially if it contains macros.
The next issue to consider is the level of code optimization. Compiler optimization tends to
destroy the relationship between lines of source code and machine code, which makes
stepping through the source unpredictable. If you experience problems such as this, you
will most likely need to compile without optimization, leaving out the -O compile switch, or
using -Og, which enables optimizations that do not interfere with debugging.
A related issue is that of stack-frame pointers, which are required by GDB to generate a
backtrace of function calls up to the current one. On some architectures, GCC will not
generate stack-frame pointers with the higher levels of optimization (-O2 and above). If you
find yourself in a situation where you really have to compile with -O2, but still want
backtraces, you can override the default behavior with -fno-omit-frame-pointer. Also
look out for code that has been hand-optimized to leave out frame pointers through the
addition of -fomit-frame-pointer: you may want to temporarily remove those bits.

Debugging applications
You can use GDB to debug applications in one of two ways: if you are developing code to
run on desktops and servers, or indeed any environment where you compile and run the
code on the same machine, it is natural to run GDB natively. However, most embedded
development is done using a cross toolchain, and hence you want to debug code running on
the device but control it from the cross-development environment, where you have the
source code and the tools. I will focus on the latter case, since it is the most likely scenario
for embedded developers, but I will also show you how to set up a system for native
debugging. I am not going to describe the basics of using GDB here since there are many
good references on that topic already, including the GDB user manual and the suggested
Further reading section at the end of the chapter.

Remote debugging using gdbserver
The key component for remote debugging is the debug agent, gdbserver, which runs on the
target and controls execution of the program being debugged. gdbserver connects to a copy
of GDB running on the host machine via a network connection or a serial interface.
Debugging through gdbserver is almost, but not quite, the same as debugging natively. The
differences are mostly centered around the fact that there are two computers involved and



they have to be in the right state for debugging to take place. Here are some things to look
out for:

At the start of a debug session, you need to load the program you want to debug on the
target using gdbserver, and then separately load GDB from your cross toolchain on
the host.
GDB and gdbserver need to connect to each other before a debug session can begin.
GDB, running on the host, needs to be told where to look for debug symbols and
source code, especially for shared libraries.
The GDB run command does not work as expected.
gdbserver will terminate when the debug session ends, and you will need to restart it
if you want another debug session.
You need debug symbols and source code for the binaries you want to debug on the
host, but not on the target. Often, there is not enough storage space for them on the
target, and they will need to be stripped before deploying to the target.
The GDB/gdbserver combination does not support all the features of natively running
GDB: for example, gdbserver cannot follow the child process after a fork, whereas
native GDB can.
Odd things can happen if GDB and gdbserver are from different versions of GDB, or
are the same version but configured differently. Ideally, they should be built from the
same source using your favorite build tool.

Debug symbols increase the size of executables dramatically, sometimes by a factor of 10.
As mentioned in Chapter 5, Building a Root Filesystem, it can be useful to remove debug
symbols without recompiling everything. The tool for the job is strip from the binutils
package in your cross toolchain. You can control the strip level with these switches:

--strip-all: This removes all symbols (default).
--strip-unneeded: This removes symbols not required for relocation processing.
--strip-debug: This removes only debug symbols.

IMPORTANT NOTE
For applications and shared libraries, --strip-all (the default) is fine, but
when it comes to kernel modules, you will find that it will stop the module
from loading. Use --strip-unneeded instead. I am still working on a use
case for –-strip-debug.

With that in mind, let's look at the specifics involved in debugging with the Yocto Project
and Buildroot.

Setting up the Yocto Project for remote debugging



There are two things to be done to debug applications remotely when using the Yocto
Project: you need to add gdbserver to the target image, and you need to create an SDK that
includes GDB and has debug symbols for the executables that you plan to debug.
First, to include gdbserver in the target image, you can add the package explicitly by
adding this to conf/local.conf:

IMAGE_INSTALL_append = " gdbserver"

In the absence of a serial console, an SSH daemon also needs to be added so that you have
some way to start gdbserver on the target:

EXTRA_IMAGE_FEATURES ?= "ssh-server-openssh"

Alternatively, you can add tools-debug to EXTRA_IMAGE_FEATURES, which will add
gdbserver, native gdb, and strace to the target image (I will talk about strace in the next
chapter):

EXTRA_IMAGE_FEATURES ?= "tools-debug ssh-server-openssh"

For the second part, you just need to build an SDK as I described in Chapter 6, Selecting a
Build System:

$ bitbake -c populate_sdk <image>

The SDK contains a copy of GDB. It also contains a sysroot for the target with debug
symbols for all the programs and libraries that are part of the target image. Finally, the SDK
contains the source code for the executables. For example, looking at an SDK built for the
Raspberry Pi 4 and generated by version 3.1.5 of the Yocto Project, it is installed by default
in /opt/poky/3.1.5/. The sysroot for the target is /opt/poky/3.1.5/sysroots/aarch64-
poky-linux/. The programs are in /bin/, /sbin/, /usr/bin/, and /usr/sbin/, relative to
the sysroot, and the libraries are in /lib/ and /usr/lib/. In each of these directories, you
will find a subdirectory named .debug/ that contains the symbols for each program and
library. GDB knows to look in .debug/ when searching for symbol information. The source
code for the executables is stored in 
/usr/src/debug/, relative to the sysroot.

Setting up Buildroot for remote debugging
Buildroot does not make a distinction between the build environment and that used for
application development: there is no SDK. Assuming that you are using the Buildroot
internal toolchain, you need to enable these options to build the cross GDB for the host and
to build gdbserver for the target:

BR2_PACKAGE_HOST_GDB, in Toolchain | Build cross gdb for the host
BR2_PACKAGE_GDB, in Target packages | Debugging, profiling and 
benchmark | gdb
BR2_PACKAGE_GDB_SERVER, in Target packages | Debugging, profiling and
benchmark | gdbserver



You also need to build executables with debug symbols, for which you need to enable
BR2_ENABLE_DEBUG, in Build options | build packages with debugging symbols.
This will create libraries with debug symbols in output/host/usr/<arch>/sysroot.

Starting to debug
Now that you have gdbserver installed on the target and a cross GDB on the host, you can
start a debug session.
Connecting GDB and gdbserver
The connection between GDB and gdbserver can be through a network or serial interface.
In the case of a network connection, you launch gdbserver with the TCP port number to
listen on and, optionally, an IP address to accept connections from. In most cases, you don't
care which IP address is going to connect, so you can just provide the port number. In this
example, gdbserver waits for a connection on port 10000 from any host:

# gdbserver :10000 ./hello-world

Process hello-world created; pid = 103

Listening on port 10000

Next, start the copy of GDB from your toolchain, pointing it at an unstripped copy of the
program so that GDB can load the symbol table:

$ aarch64-poky-linux-gdb hello-world

In GDB, use the target remote command to make the connection to gdbserver, giving it
the IP address or hostname of the target and the port it is waiting on:

(gdb) target remote 192.168.1.101:10000

When gdbserver sees the connection from the host, it prints the following:
Remote debugging from host 192.168.1.1

The procedure is similar for a serial connection. On the target, you tell gdbserver which
serial port to use:

# gdbserver /dev/ttyO0 ./hello-world

You may need to configure the port baud rate beforehand using stty(1) or a similar
program. A simple example would be as follows:

# stty -F /dev/ttyO0 115200

There are many other options to stty, so read the manual page for more details. It is
worthwhile noting that the port must not be being used for anything else. For example, you
can't use a port that is being used as the system console.
On the host, you make the connection to gdbserver using target remote plus the serial
device at the host end of the cable. In most cases, you will want to set the baud rate of the
host serial port first, using the GDB command set serial baud:

(gdb) set serial baud 115200

(gdb) target remote /dev/ttyUSB0



Even though GDB and gdbserver are now connected, we are not ready to set breakpoints
and start stepping through source code yet.
Setting the sysroot
GDB needs to know where to find debug information and source code for the program and
shared libraries you are debugging. When debugging natively, the paths are well known and
built in to GDB, but when using a cross toolchain, GDB has no way to guess where the root
of the target filesystem is. You have to provide this information.
If you built your application using the Yocto Project SDK, the sysroot is within the SDK,
and so you can set it in GDB like this:

(gdb) set sysroot /opt/poky/3.1.5/sysroots/aarch64-poky-linux

If you are using Buildroot, you will find that the sysroot is in
output/host/usr/<toolchain>/sysroot, and that there is a symbolic link to it in
output/staging. So, for Buildroot, you would set the sysroot like this:

(gdb) set sysroot /home/chris/buildroot/output/staging

GDB also needs to find the source code for the files you are debugging. GDB has a search
path for source files, which you can see using the show directories command:

(gdb) show directories

Source directories searched: $cdir:$cwd

These are the defaults: $cwd is the current working directory of the GDB instance running
on the host; $cdir is the directory where the source was compiled. The latter is encoded
into the object files with the tag DW_AT_comp_dir. You can see these tags using objdump --
dwarf, like this, for example:

$ aarch64-poky-linux-objdump --dwarf ./helloworld | grep DW_AT_comp_dir

[…]

<160> DW_AT_comp_dir : (indirect string, offset: 0x244):
/home/chris/helloworld

[…]

In most cases, the defaults, $cdir and $cwd, are sufficient, but problems arise if the
directories have been moved between compilation and debugging. One such case occurs
with the Yocto Project. Taking a deeper look at the DW_AT_comp_dir tags for a program
compiled using the Yocto Project SDK, you may notice this:

$ aarch64-poky-linux-objdump --dwarf ./helloworld | grep DW_AT_comp_dir

<2f> DW_AT_comp_dir : /usr/src/debug/glibc/2.31-r0/git/csu

<79> DW_AT_comp_dir : (indirect string, offset: 0x139):
/usr/src/debug/glibc/2.31-r0/git/csu

<116> DW_AT_comp_dir : /usr/src/debug/glibc/2.31-r0/git/csu

<160> DW_AT_comp_dir : (indirect string, offset: 0x244):
/home/chris/helloworld

[…]

Here, you can see multiple references to the directory /usr/src/debug/glibc/2.31-
r0/git, but where is it? The answer is that it is in the sysroot for the SDK, so the full path
is /opt/poky/3.1.5/sysroots/aarch64-poky-linux /usr/src/debug/glibc/2.31-



r0/git. The SDK contains source code for all of the programs and libraries that are in the
target image. GDB has a simple way to cope with an entire directory tree being moved like
this: substitute-path. So, when debugging with the Yocto Project SDK, you need to use
these commands:

(gdb) set sysroot /opt/poky/3.1.5/sysroots/aarch64-poky-linux

(gdb) set substitute path
/usr/src/debug/opt/poky/3.1.5/sysroots/aarch64-poky-linux/usr/src/debug

You may have additional shared libraries that are stored outside the sysroot. In that case,
you can use set solib-search-path, which can contain a colon-separated list of
directories to search for shared libraries. GDB searches solib-search-path only if it
cannot find the binary in the sysroot.
A third way of telling GDB where to look for source code, for both libraries and programs,
is to use the directory command:

(gdb) directory /home/chris/MELP/src/lib_mylib

Source directories searched: /home/chris/MELP/src/lib_mylib:$cdir:$cwd

Paths added in this way take precedence because they are searched before those from
sysroot or solib-search-path.
GDB command files
There are some things that you need to do each time you run GDB, for example, setting the
sysroot. It is convenient to put such commands into a command file and run them each
time GDB is started. GDB reads commands from $HOME/.gdbinit, then from .gdbinit in
the current directory, and then from files specified on the command line with the -x
parameter. However, recent versions of GDB will refuse to load .gdbinit from the current
directory for security reasons. You can override that behavior by adding a line such as this
to $HOME/.gdbinit:

set auto-load safe-path /

Alternatively, if you don't want to enable auto-loading globally, you can specify a particular
directory like this:

add-auto-load-safe-path /home/chris/myprog

My personal preference is to use the -x parameter to point to the command file, which
exposes the location of the file so that I don't forget about it.
To help you set up GDB, Buildroot creates a GDB command file containing the correct
sysroot command in output/staging/usr/share/buildroot/gdbinit. It will contain a
line similar to this one:

set sysroot /home/chris/buildroot/output/host/usr/aarch64-buildroot-
linux-gnu/sysroot

Now that GDB is running and can find the information it needs, let's look at some of the
commands we can perform with it.
Overview of GDB commands
GDB has many more commands, which are described in the online manual and in the
resources mentioned in the Further reading section. To help you get going as quickly as



possible, here is a list of the most commonly used commands. In most cases, there is a short
form for the command, which is listed in the following tables.

Breakpoints
These are the commands for managing breakpoints:

Running and stepping
These are commands for controlling the execution of a program:



Getting information
These are commands for getting information regarding the debugger:



Before we can begin stepping through a program inside a debug session, we first need to set
an initial breakpoint.
Running to a breakpoint
gdbserver loads the program into memory and sets a breakpoint at the first instruction, and
then waits for a connection from GDB. When the connection is made, you enter into a
debug session. However, you will find that if you try to single-step immediately, you will
get this message:

Cannot find bounds of current function

This is because the program has been halted in code written in assembly, which creates the
runtime environment for C/C++ programs. The first line of C/C++ code is the main()
function. Supposing that you want to stop at main(), you would set a breakpoint there and
then use the continue command (abbreviation c) to tell gdbserver to continue from the
breakpoint at the start of the program and stop at main():

(gdb) break main

Breakpoint 1, main (argc=1, argv=0xbefffe24) at helloworld.c:8
printf("Hello, world!\n");

(gdb) c

At this point, you may see the following:



Reading /lib/ld-linux.so.3 from remote target...

warning: File transfers from remote targets can be slow. Use "set
sysroot" to access files locally instead.

With older versions of GDB, you may instead see this:
warning: Could not load shared library symbols for 2 libraries, e.g.
/lib/libc.so.6.

In both cases, the problem is that you have forgotten to set the sysroot! Take another look
at the earlier section on sysroot.
This is all very different to starting a program natively, where you just type run. In fact, if
you try typing run in a remote debug session, you will either see a message saying that the
remote target does not support the run command, or in older versions of GDB, it will just
hang without any explanation.
Extending GDB with Python
We can embed a full Python interpreter into GDB to extend its functionality. This is done
by configuring GDB using the --with-python option prior to building. GDB has an API
that exposes much of its internal state as Python objects. This API allows us to define our
own custom GDB commands as scripts written in Python. These extra commands may
include useful debugging aids such as tracepoints and pretty printers that are not built into
GDB.

Building GDB with Python support
We have already covered Setting up Buildroot for remote debugging. There are some
additional steps needed to enable Python support inside GDB. At the time of writing,
Buildroot only supports embedding Python 2.7 inside GDB, which is unfortunate, but better
than no support for Python at all. We cannot use a toolchain generated by Buildroot to build
GDB with Python support because it is missing some necessary thread support.
To build cross GDB for the host with Python support, perform the following steps:

1. Navigate to the directory where you installed Buildroot:
$ cd buildroot

2. Copy the configuration file for the board you wish to build an image for:
$ cd configs

$ cp raspberrypi4_64_defconfig rpi4_64_gdb_defconfig

$ cd ..

3. Clean previous build artifacts from the output directory:
$ make clean

4. Activate your configuration file:
$ make rpi4_64_gdb_defconfig

5. Begin customizing your image:
$ make menuconfig



6. Enable use of an external toolchain by navigating to Toolchain | Toolchain type |
External toolchain and selecting that option.

7. Back out of External toolchain and open the Toolchain submenu. Select a known
working toolchain, such as Linaro AArch64 2018.05, as your external toolchain.

8. Select Build cross gdb for the host from the Toolchain page and enable both TUI
support and Python support:

Figure 19.1 – Python support in GDB



9. Drill down into the GDB debugger Version submenu from the Toolchain page and
select the newest version of GDB available in Buildroot.

10. Back out of the Toolchain page and drill down into Build options. Select build
packages with debugging symbols.

11. Back out of the Build options page and drill down into System Configuration and
select Enable root login with password. Open Root password and enter a non-empty
password in the text field:

Figure 19.2 – Root password

12. Back out of the System Configuration page and drill down into Target packages |
Debugging, profiling and benchmark. Select the gdb package to add gdbserver to
the target image.



13. Back out of Debugging, profiling and benchmark and drill down into Target
packages | Networking applications. Select the dropbear package to enable scp and
ssh access to the target. Note that dropbear does not allow root scp and ssh access
without a password.

14. Add the haveged entropy daemon, which can be found under Target packages |
Miscellaneous so that SSH is available quicker upon booting.

15. Add another package to your image so you have something to debug. I chose the
bsdiff binary patch/diff tool, which is written in C and can be found under Target
packages | Development tools.

16. Save your changes and exit Buildroot's menuconfig.
17. Save your changes to your configuration file:

$ make savedefconfig

18. Build the image for the target:
$ make

A readymade rpi4_64_gdb_defconfig file for the Raspberry Pi 4 can be found in the code
archive for this chapter if you wish to skip the previous menuconfig steps. Copy that file
form MELP/Chapter19/buildroot/configs/ to your buildroot/configs directory and run
make on that if you prefer.
When the build is done, there should be a bootable sdcard.img file in output/images/ that
you can write to a microSD card using Etcher. Insert that microSD into your target device
and boot it. Connect the target device to your local network with an Ethernet cable and
locate its IP address using arp-scan. SSH into the device as root and enter the password
that you set when configuring your image. I specified temppwd as the root password for my
rpi4_64_gdb_defconfig image.
Now, let's debug bsdiff remotely using GDB:

1. First, navigate to the /usr/bin directory on the target:
# cd /usr/bin

2. Then, start bdiff with gdbserver, as we did with helloworld earlier:
# gdbserver :10000 ./bsdiff pcregrep pcretest out

Process ./bsdiff created; pid = 169

Listening on port 10000

3. Next, start the copy of GDB from your toolchain, pointing it at an unstripped copy of
the program so that GDB can load the symbol table:

$ cd output/build/bsdiff-4.3

$ ~/buildroot/output/host/bin/aarch64-linux-gdb bsdiff

4. In GDB, set the sysroot like this:
(gdb) set sysroot ~/buildroot/output/staging

5. Then, use the command target remote to make the connection to gdbserver, giving it
the IP address or hostname of the target and the port it is waiting on:



(gdb) target remote 192.168.1.101:10000

6. When gdbserver sees the connection from the host, it prints the following:
Remote debugging from host 192.168.1.1

7. We can now load Python command scripts such as tp.py into GDB from <data-
directory>/python and use these commands like so:

(gdb) source tp.py

(gdb) tp search

In this case, tp is the name of the tracepoint command and search is the
name of a recursive function in bsdiff.

8. To show the directory where GDB searches for Python command scripts, execute the
following command:

(gdb) show data-directory

The Python support in GDB can also be used to debug Python programs. GDB has
visibility into CPython's internals that the standard pdb debugger for Python does not. It can
even inject Python code into a running Python process. This enables the creation of
powerful debugging tools, like this Python 3 memory analyzer
(https://github.com/facebookincubator/memory-analyzer) from Facebook.

Native debugging
Running a native copy of GDB on the target is not as common as doing it remotely, but it is
possible. As well as installing GDB in the target image, you will also need unstripped
copies of the executables you want to debug and the corresponding source code installed in
the target image. Both the Yocto Project and Buildroot allow you to do this.

IMPORTANT NOTE
While native debugging is not a common activity for embedded developers, running profile
and trace tools on the target is very common. These tools usually work best if you have
unstripped binaries and source code on the target, which is half of the story I am telling
here. I will return to this topic in the next chapter.
The Yocto Project
To begin with, add gdb to the target image by adding this to conf/local.conf:

EXTRA_IMAGE_FEATURES ?= "tools-debug dbg-pkgs"

You need the debug information for the packages you want to debug. The Yocto Project
builds debug variants of packages, which contain unstripped binaries and the source code.
You can add these debug packages selectively to your target image by adding <package
name>-dbg to your conf/local.conf. Or, you can simply install all debug packages by
adding dbg-pkgs to EXTRA_IMAGE_FEATURES, as just shown. Be warned that this will
increase the size of the target image dramatically, perhaps by several hundreds of
megabytes.

https://github.com/facebookincubator/memory-analyzer


The source code is installed in /usr/src/debug/<package name> in the target image. This
means that GDB will pick it up without needing to run set substitute-path. If you don't
need the source, you can prevent it from being installed by adding this to your
conf/local.conf file:

PACKAGE_DEBUG_SPLIT_STYLE = "debug-without-src"

Buildroot
With Buildroot, you can tell it to install a native copy of GDB in the target image by
enabling this option:

BR2_PACKAGE_GDB_DEBUGGER in Target packages | Debugging, profiling and
benchmark | Full debugger

Then, to build binaries with debug information and to install them in the target image
without stripping, enable the first and disable the second of these two options:

BR2_ENABLE_DEBUG in Build options | Build packages with debugging symbols
BR2_STRIP_strip in Build options | Strip target binaries

That's all I have to say about native debugging. Again, the practice is uncommon on
embedded devices because the extra source code and debug symbols add bloat to the target
image. Next, let's look at another form of remote debugging.

Just-in-time debugging
Sometimes, a program will start to misbehave after it has been running for a while, and you
would like to know what it is doing. The GDB attach feature does exactly this. I call it just-
in-time debugging. It is available with both native and remote debug sessions.
In the case of remote debugging, you need to find the PID of the process to be debugged
and pass it to gdbserver with the --attach option. For example, if the PID is 109, you
would type this:

# gdbserver --attach :10000 109

Attached; pid = 109

Listening on port 10000

This forces the process to stop as if it were at a breakpoint, allowing you to start your cross
GDB in the normal way and connect to gdbserver. When you are done, you can detach,
allowing the program to continue running without the debugger:

(gdb) detach

Detaching from program: /home/chris/MELP/helloworld/helloworld, process
109

Ending remote debugging.

Attaching to a running process by PID is certainly handy, but what about multi-process or
multithreaded programs? There are techniques for debugging those types of programs with
GDB as well.



Debugging forks and threads
What happens when the program you are debugging forks? Does the debug session follow
the parent process or the child? This behavior is controlled by follow-fork-mode, which
may be parent or child, with parent being the default. Unfortunately, current versions
(10.1) of gdbserver do not support this option, so it only works for native debugging. If
you really need to debug the child process while using gdbserver, a workaround is to
modify the code so that the child loops on a variable immediately after the fork, giving you
the opportunity to attach a new gdbserver session to it and then to set the variable so that it
drops out of the loop.
When a thread in a multithreaded process hits a breakpoint, the default behavior is for all
threads to halt. In most cases, this is the best thing to do as it allows you to look at static
variables without them being changed by the other threads. When you recommence
execution of the thread, all the stopped threads start up, even if you are single-stepping, and
it is especially this last case that can cause problems. There is a way to modify the way in
which GDB handles stopped threads, through a parameter called scheduler-locking.
Normally it is off, but if you set it to on, only the thread that was stopped at the 
breakpoint is resumed and the others remain stopped, giving you a chance to see what the
thread alone does without interference. This continues to be the case until you turn
scheduler-locking off. gdbserver supports this feature.

Core files
Core files capture the state of a failing program at the point that it terminates. You don't
even have to be in the room with a debugger when the bug manifests itself. So, when you
see Segmentation fault (core dumped), don't shrug; investigate the core file and extract
the goldmine of information in there.
The first observation is that core files are not created by default, but only when the core file
resource limit for the process is non-zero. You can change it for the current shell using
ulimit -c. To remove all limits on the size of core files, type the following command:

$ ulimit -c unlimited

By default, the core file is named core and is placed in the current working directory of the
process, which is the one pointed to by /proc/<PID>/cwd. There are a number of problems
with this scheme. Firstly, when looking at a device with several files named core, it is not
obvious which program generated each one. Secondly, the current working directory of the
process may well be in a read-only filesystem, there may not be enough space to store the
core file, or the process may not have permissions to write to the current working directory.
There are two files that control the naming and placement of core files. The first is 
/proc/sys/kernel/core_uses_pid. Writing a 1 to it causes the PID number of the dying
process to be appended to the filename, which is somewhat useful as long as you can
associate the PID number with a program name from log files.



Much more useful is /proc/sys/kernel/core_pattern, which gives you a lot more control
over core files. The default pattern is core, but you can change it to a pattern composed of
these meta characters:

%p: The PID
%u: The real UID of the dumped process
%g: The real GID of the dumped process
%s: The number of the signal causing the dump
%t: The time of dump, expressed as seconds since the Epoch, 1970-01-01 00:00:00
+0000 (UTC)
%h: The hostname
%e: The executable filename
%E: The path name of the executable, with slashes (/) replaced by exclamation marks
(!)
%c: The core file size soft resource limit of the dumped process

You can also use a pattern that begins with an absolute directory name so that all core files
are gathered together in one place. As an example, the following pattern puts all core files
into the /corefiles directory and names them with the program name and the time of the
crash:

# echo /corefiles/core.%e.%t > /proc/sys/kernel/core_pattern

Following a core dump, you would find something like this:
# ls /corefiles

core.sort-debug.1431425613

For more information, refer to the manual page, core(5).

Using GDB to look at core files
Here is a sample GDB session looking at a core file:

$ arm-poky-linux-gnueabi-gdb sort-debug
/home/chris/rootfs/corefiles/core.sort-debug.1431425613

[…]

Core was generated by `./sort-debug'.

Program terminated with signal SIGSEGV, Segmentation fault.

#0 0x000085c8 in addtree (p=0x0, w=0xbeac4c60 "the") at sort-debug.c:41

41 p->word = strdup (w);

This shows that the program stopped at line 41. The list command shows the code in 
the vicinity:

(gdb) list

37 static struct tnode *addtree (struct tnode *p, char *w)



38 {

39 int cond;

40

41 p->word = strdup (w);

42 p->count = 1;

43 p->left = NULL;

44 p->right = NULL;

45

The backtrace command (shortened to bt) shows how we got to this point:
(gdb) bt

#0 0x000085c8 in addtree (p=0x0, w=0xbeac4c60 "the") at sort-debug.c:41

#1 0x00008798 in main (argc=1, argv=0xbeac4e24) at sort-debug.c:89

This is an obvious mistake: addtree() was called with a null pointer.
GDB began as a command-line debugger and many people still use it this way. Even though
LLVM project's LLDB debugger is gaining in popularity, GCC and GDB remain the
prominent compiler and debugger for Linux. So far, we have focused exclusively on GDB's
command-line interface. Now we will look at some frontends to GDB with progressively
more modern user interfaces.

GDB user interfaces
GDB is controlled at a low level through the GDB machine interface, GDB/MI, which can
be used to wrap GDB in a user interface or as part of a larger program, and it considerably
extends the range of options available to you.
In this section, I will describe three that are well suited to debugging embedded targets: 
the Terminal User Interface (TUI), the Data Display Debugger (DDD), and Visual 
Studio Code.

Terminal User Interface
Terminal User Interface (TUI) is an optional part of the standard GDB package. The main
feature is a code window that shows the line of code about to be executed, together with
any breakpoints. It is a definite improvement on the list command in command-line mode
GDB.
The attraction of TUI is that it just works without any extra setup, and since it is in text
mode, it is possible to use over an SSH terminal session, for example, when running gdb
natively on a target. Most cross toolchains configure GDB with TUI. Simply add -tui to
the command line and you will see the following:



Figure 19.3 – TUI

If you still find TUI lacking and prefer a truly graphical frontend to GDB, the GNU project
also offers one of those (https://www.gnu.org/software/ddd).

Data Display Debugger
Data Display Debugger (DDD) is a simple standalone program that gives you a graphical
user interface to GDB with minimal fuss and bother, and although the UI controls look
dated, it does everything that is necessary.
The --debugger option tells DDD to use GDB from your toolchain, and you can use the -x
argument to give the path to a GDB command file:

$ ddd --debugger arm-poky-linux-gnueabi-gdb -x gdbinit sort-debug

The following screenshot shows off one of the nicest features: the data window, which
contains items in a grid that you can rearrange as you wish. If you double-click on a pointer,
it is expanded into a new data item and the link is shown with an arrow:

https://www.gnu.org/software/ddd


Figure 19.4 – DDD

If neither of these two GDB frontends is acceptable because you are a full stack web
developer accustomed to working with the latest tools in your industry, then we still have
you covered.

Visual Studio Code
Visual Studio Code is a very popular open source code editor from Microsoft. Because it is
an Electron application written in TypeScript, Visual Studio Code feels more lightweight
and responsive than full-blown IDEs such as Eclipse. There is rich language support (code



completion, go to definition, etc.) for many languages by way of extensions contributed by
its large community of users. Remote cross GDB debugging can be integrated into Visual
Studio Code using extensions for CMake and C/C++.
Installing Visual Studio Code
The easiest way to install Visual Studio Code on an Ubuntu Linux system is to use snap:

$ sudo snap install --classic code

Before we can create a C/C++ project that we can deploy to the Raspberry Pi 4 and debug
remotely, we first need a toolchain.
Installing a toolchain
We will use Yocto to build an SDK for the Raspberry Pi 4. This SDK will include a
toolchain that targets the Raspberry Pi 4's 64-bit Arm cores. We already used Yocto to build
a 64-bit Arm image for the Raspberry Pi 4 in the Building an existing BSP section of
Chapter 7, Developing with Yocto.
Let's use that same poky/build-rpi output directory from that chapter to build a new
core-image-minimal-dev image and the corresponding SDK for that image:

1. First, navigate one level above the directory where you cloned Yocto.
2. Next, source the build-rpi build environment:

$ source poky/oe-init-build-env build-rpi

3. Edit conf/local.conf so that it includes the following:
MACHINE ?= "raspberrypi4-64"

IMAGE_INSTALL_append = " gdbserver"

EXTRA_IMAGE_FEATURES ?= "ssh-server-openssh debug-tweaks"

The debug-tweaks feature eliminates the need for a root password so that
command-line tools such as scp and ssh can be used to deploy and run
newly built binaries from the host to the target.

4. Then, build the development image for the Raspberry Pi 4:
$ bitbake core-image-minimal-dev

5. Use Etcher to write the resulting core-image-minimal-dev-raspberrypi4-

64.wic.bz2 image from tmp/deploy/images/raspberrypi4-64/ to a microSD card
and boot it on your Raspberry Pi 4.

6. Plug your Raspberry Pi 4 into your local network over Ethernet and use arp-scan to
locate the IP address of your Raspberry Pi 4. We will need this IP address later when
Configuring CMake for remote debugging.

7. Lastly, build the SDK:
$ bitbake -c populate_sdk core-image-minimal-dev

IMPORTANT NOTE
Never use debug-tweaks in production images. An automated CI/CD
pipeline for OTA software updates is essential, but great care must be taken



to ensure that development images do not accidentally leak out to
production.

We now have a self-extracting installer named poky-glibc-x86_64-core-image-minimal-
dev-aarch64-raspberrypi4-64-toolchain-3.1.5.sh in the tmp/deploy/sdk directory
under poky/build-rpi that we can use to install this newly built SDK on any Linux
development machine. Find the SDK installer in tmp/deploy/sdk and run it:

$ ./poky-glibc-x86_64-core-image-minimal-dev-aarch64-raspberrypi4-64-
toolchain-3.1.5.sh

Poky (Yocto Project Reference Distro) SDK installer version 3.1.5

=================================================================

Enter target directory for SDK (default: /opt/poky/3.1.5):

You are about to install the SDK to "/opt/poky/3.1.5". Proceed [Y/n]? Y

[sudo] password for frank:

Extracting
SDK..........................................................done

Setting it up...done

SDK has been successfully set up and is ready to be used.

Each time you wish to use the SDK in a new shell session, you need to
source the environment setup script e.g.

$ . /opt/poky/3.1.5/environment-setup-aarch64-poky-linux

Notice that the SDK was installed to /opt/poky/3.1.5. We won't source environment-
setup-aarch64-poky-linux as instructed, but the contents of that file will be used to
populate the upcoming project files for Visual Studio Code.
Installing CMake
We will use CMake to cross-compile the C code we will be deploying and debugging on
the Raspberry Pi 4. To install CMake on Ubuntu Linux, execute the following command:

$ sudo apt update

$ sudo apt install cmake

CMake should already have been installed on your host machine as part of Chapter 2,
Learning about Toolchains.
Creating a Visual Studio Code project
Projects built with CMake have a canonical structure that includes a CMakeLists.txt file
and separate src and build directories.
Create a Visual Studio Code project named hellogdb in your home directory:

$ mkdir hellogdb

$ cd hellogdb

$ mkdir src build

$ code .

The last code . command will launch Visual Studio Code and open the hellogdb directory.
A hidden .vscode directory containing settings.json and launch.json for a project also
gets created when you launch Visual Studio Code from a directory.



Installing Visual Studio Code extensions
We need to install the following Visual Studio Code extensions to cross-compile and debug
code with the toolchain from our SDK:

C/C++ by Microsoft
CMake by twxs
CMake Tools by Microsoft

Click on the Extensions icon on the left edge of the Visual Studio Code window, search for
these extensions in the marketplace, and install them. Once they are installed, your
Extensions sidebar should look something like this:



Figure 19.5 – Extensions

Now we will use CMake to integrate the toolchain that came with the SDK we built to
cross-compile and debug our hellogdb project.
Configuring CMake
We need to populate CMakeLists.txt and cross.cmake to cross-compile the hellogdb
project with our toolchain:

1. First, copy MELP/Chapter19/hellogdb/CMakeLists.txt to the hellogdb project
folder in your home directory.



2. From inside Visual Studio Code, click on the Explorer icon in the upper-left corner of
the Visual Studio Window to open the Explorer sidebar.

3. Click on CMakeLists.txt in the Explorer sidebar to view the file's contents. Notice
that the project's name is defined as HelloGDBProject and the IP address of the target
board is hardcoded as 192.168.1.128.

4. Change that to match the IP address of your Raspberry Pi 4 and save the
CMakeLists.txt file.

5. Expand the src folder and click on the New File icon in the Explorer sidebar to create
a file named main.c inside the hellogdb project's src directory.

6. Paste the following code into that main.c source file and save it:
#include <stdio.h>

int main() {

    printf("Hello CMake\n");

    return 0;

}

7. Copy MELP/Chapter19/hellogdb/cross.cmake to the hellogdb project folder in your
home directory.

8. Lastly, click on cross.cmake in the Explorer sidebar to view the file's contents.
Notice that the sysroot_target and tools paths defined in cross.cmake point to the
/opt/poky/3.1.5 directory where we installed the SDK. Also notice that the values of
the CMAKE_C_COMPILE, CMAKE_CXX_COMPILE and CMAKE_CXX_FLAGS variables were
derived directly from the environment setup script included with the SDK.

With these two files in place, we are almost ready to build our hellogdb project.
Configuring project settings for building
Now, let's configure the settings.json file for the hellogdb project to use
CMakeLists.txt and cross.cmake for building:

1. With the hellogdb project open in Visual Studio Code, hit Ctrl + Shift + P to bring up
the Command Palette field.

2. Enter >settings.json in the Command Palette field and select Preferences: Open
Workspace Settings (JSON) from the list of options.

3. Edit the .vscode/settings.json for hellogdb so that it looks something like this:
{

    "cmake.sourceDirectory": "${workspaceFolder}",

    "cmake.configureArgs": [

        "-DCMAKE_TOOLCHAIN_FILE=${workspaceFolder}/cross.cmake"

    ],

    "C_Cpp.default.configurationProvider": "ms-vscode.cmake-
tools"

}



Notice the reference to cross.cmake in the definition of
cmake.configureArgs.

4. Hit Ctrl + Shift + P to bring up the Command Palette field again.
5. Enter >CMake: Delete Cache and Configuration in the Command Palette field and

execute it.
6. Click on the CMake icon on the left edge of the Visual Studio Window to open the

CMake sidebar.
7. Click on the HelloGDBProject binary in the CMake sidebar to build it:

Figure 19.6 – Building HelloGDBProject

If you configured everything correctly, the contents of the Output pane should look 
like this:



[main] Building folder: hellogdb HelloGDBProject

[build] Starting build

[proc] Executing command: /usr/bin/cmake --build
/home/frank/hellogdb/build --config Debug --target HelloGDBProject -- -j
14

[build] [100%] Built target HelloGDBProject

[build] Build finished with exit code 0

Now that we've used Visual Studio Code to build an executable binary targeting 64-bit
Arm, let's deploy it to the Raspberry Pi 4 for remote debugging.
Configuring launch settings for remote debugging
Now, let's create a launch.json file so that we can deploy the HelloGDBProject binary to
the Raspberry Pi 4 and debug it remotely from within Visual Studio Code:

1. Click on the Run icon on the left edge of the Visual Studio Code window to open the
Run sidebar.

2. Click on Create a launch.json file on the Run sidebar and select C++ (GDB/LLDB)
for the environment.

3. Select Default Configuration from the list of options when prompted for a C/C++
debug configuration type.

4. Add or edit the following fields in the "(gdb) Launch" configuration within
.vscode/launch.json as follows:

"program": "${workspaceFolder}/build/HelloGDBProject",

"miDebuggerServerAddress": "192.168.1.128:10000",

"targetArchitecture": "aarch64",

"miDebuggerPath": "/opt/poky/3.1.5/sysroots/x86_64-pokysdk-
linux/usr/bin/aarch64-poky-linux/aarch64-poky-linux-gdb",

5. Replace the 192.168.1.128 address in miDebuggerServerAddress with the IP address
of your Raspberry Pi 4 and save the file.

6. Set a breakpoint in main.c at the first line of the body of the main() function.
7. Click on the new build_and_debug – Utility in the Run sidebar to send the

HelloGDBProject binary to the Raspberry Pi 4 and start it with gdbserver.

If the Raspberry Pi 4 and launch.json file were set up correctly, then the contents of the
Output pane should look like this:

[main] Building folder: hellogdb build_and_debug

[build] Starting build

[proc] Executing command: /usr/bin/cmake --build
/home/frank/hellogdb/build --config Debug --target build_and_debug -- -j
14

[build] [100%] Built target HelloGDBProject

[build] Process ./HelloGDBProject created; pid = 552

[build] Listening on port 10000



Click on the (gdb) Launch button in the upper-left corner of the Visual Studio Code
window. GDB should hit the breakpoint we set in main.c and a line like the following
should appear in the Output pane:

[build] Remote debugging from host 192.168.1.69, port 44936

This is what Visual Studio Code should look like when GDB hits the breakpoint:

Figure 19.7 – GDB remote debugging

Hit the blue Continue button hovering up top, and the following lines should appear in the
output pane:



[build] Hello CMake

[build]

[build] Child exited with status 0

[build] [100%] Built target build_and_debug

[build] Build finished with exit code 0

Congratulations! You have successfully integrated an SDK built with Yocto into Visual
Studio Code using CMake to enable GDB remote debugging on a target device. This 
was no small feat, but now that you've seen how it's done, you can do the same for your
own projects.

Debugging kernel code
You can use kgdb for source-level debugging, in a manner similar to remote debugging with
gdbserver. There is also a self-hosted kernel debugger, kdb, that is handy for lighter-weight
tasks such as seeing whether an instruction is executed and getting the backtrace to find out
how it got there. Finally, there are kernel Oops messages and panics, which tell you a lot
about the cause of a kernel exception.

Debugging kernel code with kgdb
When looking at kernel code using a source debugger, you must remember that the kernel is
a complex system, with real-time behaviors. Don't expect debugging to be as easy as it is
for applications. Stepping through code that changes the memory mapping or switches
context is likely to produce odd results.
kgdb is the name given to the kernel GDB stubs that have been part of mainline Linux for
many years now. There is a user manual in the kernel DocBook, and you can find an online
version at https://www.kernel.org/doc/htmldocs/kgdb/index.html.
In most cases, you will connect to kgdb over the serial interface, which is usually shared
with the serial console. Hence, this implementation is called kgdboc, which is short for
kgdb over console. To work, it requires a platform tty driver that supports I/O polling
instead of interrupts, since kgdb has to disable interrupts when communicating with GDB.
A few platforms support kgdb over USB, and there have been versions that work over
Ethernet but, unfortunately, none of those have found their way into mainline Linux.
The same caveats regarding optimization and stack frames apply to the kernel, with the
limitation that the kernel is written to assume an optimization level of at least -O1. You can
override the kernel compile flags by setting KCFLAGS before running make.
These, then, are the kernel configuration options you will need for kernel debugging:

CONFIG_DEBUG_INFO is in the Kernel hacking | Compile-time checks and compiler
options | Compile the kernel with debug info menu.

https://www.kernel.org/doc/htmldocs/kgdb/index.html


CONFIG_FRAME_POINTER may be an option for your architecture and is in the Kernel
hacking | Compile-time checks and compiler options | Compile the kernel with
frame pointers menu.
CONFIG_KGDB is in the Kernel hacking | KGDB: kernel debugger menu.
CONFIG_KGDB_SERIAL_CONSOLE is in the Kernel hacking | KGDB: kernel debugger |
KGDB: use kgdb over the serial console menu.

In addition to the zImage or uImage compressed kernel image, the kernel image must be in
ELF object format so that GDB can load the symbols into memory. This is the file called
vmlinux that is generated in the directory where Linux is built. In Yocto, you can request
that a copy be included in the target image and SDK. It is built as a package named kernel-
vmlinux, which you can install like any other, for example, by adding it to the
IMAGE_INSTALL list.
The file is put into the sysroot boot directory, with a name such as this:

/opt/poky/3.1.5/sysroots/cortexa8hf-neon-poky-linux-
gnueabi/boot/vmlinux-5.4.72-yocto-standard

In Buildroot, you will find vmlinux in the directory where the kernel was built, which is in
output/build/linux-<version string>/vmlinux.

A sample debug session
The best way to show you how it works is with a simple example.
You need to tell kgdb which serial port to use, either through the kernel command line or at
runtime via sysfs. For the first option, add kgdboc=<tty>,<baud rate> to the command
line, as shown here:

kgdboc=ttyO0,115200

For the second option, boot the device up and write the terminal name to the 
/sys/module/kgdboc/parameters/kgdboc file, as shown here:

# echo ttyO0 > /sys/module/kgdboc/parameters/kgdboc

Note that you cannot set the baud rate in this way. If it is the same tty as the console, then
it is set already. If not, use stty or a similar program.
Now you can start GDB on the host, selecting the vmlinux file that matches the 
running kernel:

$ arm-poky-linux-gnueabi-gdb ~/linux/vmlinux

GDB loads the symbol table from vmlinux and waits for further input.
Next, close any terminal emulator that is attached to the console: you are about to use it for
GDB, and if both are active at the same time, some of the debug strings might get
corrupted.
Now, you can return to GDB and attempt to connect to kgdb. However, you will find that
the response you get from target remote at this time is unhelpful:



(gdb) set serial baud 115200

(gdb) target remote /dev/ttyUSB0

Remote debugging using /dev/ttyUSB0

Bogus trace status reply from target: qTStatus

The problem is that kgdb is not listening for a connection at this point. You need to interrupt
the kernel before you can enter into an interactive GDB session with it. Unfortunately, just
typing Ctrl + C in GDB, as you would with an application, does not work. You have to
force a trap into the kernel by launching another shell on the target, via SSH, for example,
and writing g to /proc/sysrq-trigger on the target board:

# echo g > /proc/sysrq-trigger

The target stops dead at this point. Now you can connect to kgdb via the serial device at the
host end of the cable:

(gdb) set serial baud 115200

(gdb) target remote /dev/ttyUSB0

Remote debugging using /dev/ttyUSB0

0xc009a59c in arch_kgdb_breakpoint ()

At last, GDB is in charge. You can set breakpoints, examine variables, look at backtraces,
and so on. As an example, set a break on sys_sync, as follows:

(gdb) break sys_sync

Breakpoint 1 at 0xc0128a88: file fs/sync.c, line 103.

(gdb) c

Continuing.

Now the target comes back to life. Typing sync on the target calls sys_sync and hits 
the breakpoint:

[New Thread 87]

[Switching to Thread 87]

Breakpoint 1, sys_sync () at fs/sync.c:103

If you have finished the debug session and want to disable kgdboc, just set the kgdboc
terminal to null:

# echo "" > /sys/module/kgdboc/parameters/kgdboc

Like attaching to a running process with GDB, this technique of trapping the kernel and
connecting to kgdb over a serial console works once the kernel is done booting. But what if
the kernel never finishes booting because of a bug?

Debugging early code
The preceding example works in cases where the code you are interested in is executed
when the system is fully booted. If you need to get in early, you can tell the kernel to wait
during boot by adding kgdbwait to the command line, after the kgdboc option:

kgdboc=ttyO0,115200 kgdbwait

Now, when you boot, you will see this on the console:



[ 1.103415] console [ttyO0] enabled

[ 1.108216] kgdb: Registered I/O driver kgdboc.

[ 1.113071] kgdb: Waiting for connection from remote gdb...

At this point, you can close the console and connect from GDB in the usual way.

Debugging modules
Debugging kernel modules presents an additional challenge because the code is relocated at
runtime, and so you need to find out at what address it resides. The information is presented
through sysfs. The relocation addresses for each section of the module are stored in
/sys/module/<module name>/sections. Note that since ELF sections begin with a dot (.),
they appear as hidden files, and you will have to use ls -a if you want to list them. The
important ones are .text, .data, and .bss.
Take as an example a module named mbx:

# cat /sys/module/mbx/sections/.text

0xbf000000

# cat /sys/module/mbx/sections/.data

0xbf0003e8

# cat /sys/module/mbx/sections/.bss

0xbf0005c0

Now you can use these numbers in GDB to load the symbol table for the module at those
addresses:

(gdb) add-symbol-file /home/chris/mbx-driver/mbx.ko 0xbf000000 \

-s .data 0xbf0003e8 -s .bss 0xbf0005c0

add symbol table from file "/home/chris/mbx-driver/mbx.ko" at

.text_addr = 0xbf000000

.data_addr = 0xbf0003e8

.bss_addr = 0xbf0005c0

Everything should now work as normal: you can set breakpoints and inspect global and
local variables in the module just as you can in vmlinux:

(gdb) break mbx_write

Breakpoint 1 at 0xbf00009c: file /home/chris/mbx-driver/mbx.c, line 93.

(gdb) c

Continuing.

Then, force the device driver to call mbx_write, and it will hit the breakpoint:
Breakpoint 1, mbx_write (file=0xde7a71c0, buffer=0xadf40 "hello\n\n",

length=6, offset=0xde73df80)

at /home/chris/mbx-driver/mbx.c:93

If you already use GDB to debug code in user space, then you should feel right at home
debugging kernel code and modules with kgdb. Let's look at kdb next.



Debugging kernel code with kdb
Although kdb does not have the features of kgdb and GDB, it does have its uses, and being
selfhosted, there are no external dependencies to worry about. kdb has a simple command-
line interface that you can use on a serial console. You can use it to inspect memory,
registers, process lists, and dmesg and even set breakpoints to stop at a certain location.
To configure your kernel so that you can call kdb via a serial console, enable kgdb as shown
previously, and then enable this additional option:

CONFIG_KGDB_KDB, which is in the KGDB: Kernel hacking | kernel debugger |
KGDB_KDB: Include kdb frontend for kgdb menu

Now, when you force the kernel into a trap, instead of entering into a GDB session, you will
see the kdb shell on the console:

# echo g > /proc/sysrq-trigger

[ 42.971126] SysRq : DEBUG

Entering kdb (current=0xdf36c080, pid 83) due to Keyboard Entry

kdb>

There are quite a few things you can do in the kdb shell. The help command will print all of
the options. Here is an overview:

Getting information:
ps: This displays active processes.
ps A: This displays all processes.
lsmod: This lists modules.
dmesg: This displays the kernel log buffer.

Breakpoints:
bp: This sets a breakpoint.
bl: This lists breakpoints.
bc: This clears a breakpoint.
bt: This prints a backtrace.
go: This continues execution.

Inspect memory and registers:
md: This displays memory.
rd: This displays registers.

Here is a quick example of setting a breakpoint:
kdb> bp sys_sync

Instruction(i) BP #0 at 0xc01304ec (sys_sync)

is enabled addr at 00000000c01304ec, hardtype=0 installed=0



kdb> go

The kernel returns to life and the console shows the normal shell prompt. If you type sync,
it hits the breakpoint and enters kdb again:

Entering kdb (current=0xdf388a80, pid 88) due to Breakpoint @0xc01304ec

kdb is not a source-level debugger, so you can't see the source code or single-step.
However, you can display a backtrace using the bt command, which is useful for getting an
idea of program flow and call hierarchy.

Looking at an Oops
When the kernel performs an invalid memory access or executes an illegal instruction, a
kernel Oops message is written to the kernel log. The most useful part of this is the
backtrace, and I want to show you how to use the information there to locate the line of
code that caused the fault. I will also address the problem of preserving Oops messages if
they cause the system to crash.
This Oops message was generated by writing to the mailbox driver in
MELP/Chapter19/mbx-driver-oops:

Unable to handle kernel NULL pointer dereference at virtual address
00000004

pgd = dd064000

[00000004] *pgd=9e58a831, *pte=00000000, *ppte=00000000

Internal error: Oops: 817 [#1] PREEMPT ARM

Modules linked in: mbx(O)

CPU: 0 PID: 408 Comm: sh Tainted: G O 4.8.12-yocto-standard #1

Hardware name: Generic AM33XX (Flattened Device Tree)

task: dd2a6a00 task.stack: de596000

PC is at mbx_write+0x24/0xbc [mbx]

LR is at __vfs_write+0x28/0x48

pc : [<bf0000f0>] lr : [<c024ff40>] psr: 800e0013

sp : de597f18 ip : de597f38 fp : de597f34

r10: 00000000 r9 : de596000 r8 : 00000000

r7 : de597f80 r6 : 000fda00 r5 : 00000002 r4 : 00000000

r3 : de597f80 r2 : 00000002 r1 : 000fda00 r0 : de49ee40

Flags: Nzcv IRQs on FIQs on Mode SVC_32 ISA ARM Segment none

Control: 10c5387d Table: 9d064019 DAC: 00000051

Process sh (pid: 408, stack limit = 0xde596210)

The line of the Oops that reads PC is at mbx_write+0x24/0xbc [mbx] and tells you most of
what you want to know: the last instruction was in the mbx_write function of a kernel
module named mbx. Furthermore, it was at offset 0x24 bytes from the start of the function,
which is 0xbc bytes long.
Next, take a look at the backtrace:

Stack: (0xde597f18 to 0xde598000)



7f00: bf0000cc 00000002

7f20: 000fda00 de597f80 de597f4c de597f38 c024ff40 bf0000d8 de49ee40
00000002

7f40: de597f7c de597f50 c0250c40 c024ff24 c026eb04 c026ea70 de49ee40
de49ee40

7f60: 000fda00 00000002 c0107908 de596000 de597fa4 de597f80 c025187c
c0250b80

7f80: 00000000 00000000 00000002 000fda00 b6eecd60 00000004 00000000
de597fa8

7fa0: c0107700 c0251838 00000002 000fda00 00000001 000fda00 00000002
00000000

7fc0: 00000002 000fda00 b6eecd60 00000004 00000002 00000002 000ce80c
00000000

7fe0: 00000000 bef77944 b6e1afbc b6e73d00 600e0010 00000001 d3bbdad3
d54367bf

[<bf0000f0>] (mbx_write [mbx]) from [<c024ff40>] (__vfs_write+0x28/0x48)

[<c024ff40>] (__vfs_write) from [<c0250c40>] (vfs_write+0xcc/0x158)

[<c0250c40>] (vfs_write) from [<c025187c>] (SyS_write+0x50/0x88)

[<c025187c>] (SyS_write) from [<c0107700>] (ret_fast_syscall+0x0/0x3c)

Code: e590407c e3520b01 23a02b01 e1a05002 (e5842004)

---[ end trace edcc51b432f0ce7d ]---

In this case, we don't learn much more, merely that mbx_write was called from the virtual
filesystem function, _vfs_write.
It would be very nice to find the line of code that relates to mbx_write+0x24, for which we
can use the GDB command disassemble with the /s modifier so that it shows source and
assembler code together. In this example, the code is in the mbx.ko module, so we load that
into gdb:

$ arm-poky-linux-gnueabi-gdb mbx.ko

[…]

(gdb) disassemble /s mbx_write

Dump of assembler code for function mbx_write:

99 {

0x000000f0 <+0>: mov r12, sp

0x000000f4 <+4>: push {r4, r5, r6, r7, r11, r12, lr, pc}

0x000000f8 <+8>: sub r11, r12, #4

0x000000fc <+12>: push {lr} ; (str lr, [sp, #-4]!)

0x00000100 <+16>: bl 0x100 <mbx_write+16>

100 struct mbx_data *m = (struct mbx_data *)file->private_data;

0x00000104 <+20>: ldr r4, [r0, #124] ; 0x7c

0x00000108 <+24>: cmp r2, #1024 ; 0x400

0x0000010c <+28>: movcs r2, #1024 ; 0x400

101 if (length > MBX_LEN)

102 length = MBX_LEN;

103 m->mbx_len = length;

0x00000110 <+32>: mov r5, r2



0x00000114 <+36>: str r2, [r4, #4]

The Oops told us that the error occurred at mbx_write+0x24. From the disassembly, we can
see that mbx_write is at address 0xf0. Adding 0x24 gives 0x114, which is generated by the
code on line 103.

IMPORTANT NOTE
You may think that I have got the wrong instruction because the listing reads 0x00000114
<+36>: str r2, [r4, #4]. Surely, we are looking for +24, and not +36? Ah, but the
authors of GDB are trying to confuse us here. The offsets are displayed in decimal, not hex:
36 = 0x24, so I got the right one after all!
You can see from line 100 that m has the type struct mbx_data *. Here is the place where
that structure is defined:

#define MBX_LEN 1024

struct mbx_data {

    char mbx[MBX_LEN];

    int mbx_len;

};

So, it looks like the m variable is a null pointer, and that is what is causing the Oops.
Looking at the code where m is initialized, we can see that there is a line missing. With the
driver modified to initialize the pointer, as shown highlighted in the following code block, it
works fine, without the Oops:

static int mbx_open(struct inode *inode, struct file *file)

{

    if (MINOR(inode->i_rdev) >= NUM_MAILBOXES) {

        printk("Invalid mbx minor number\n");

        return -ENODEV;

    }

    file->private_data = &mailboxes[MINOR(inode->i_rdev)];

    return 0;

}

Not every Oops is this easy to pinpoint, especially if it occurs before the contents of the
kernel log buffer can be displayed.

Preserving the Oops
Decoding an Oops is only possible if you can capture it in the first place. If the system
crashes during boot before the console is enabled, or after a suspend, you won't see it. There
are mechanisms to log kernel Oops and messages to an MTD partition or to persistent
memory, but here is a simple technique that works in many cases and needs little prior
thought.
So long as the contents of memory are not corrupted during a reset (and usually they are
not), you can reboot into the bootloader and use it to display memory. You need to know the



location of the kernel log buffer, remembering that it is a simple ring buffer of text
messages. The symbol is __log_buf. Look this up in System.map for the kernel:

$ grep __log_buf System.map

c0f72428 b __log_buf

Then, map that kernel logical address into a physical address that U-Boot can understand by
subtracting PAGE_OFFSET and adding the physical start of RAM. PAGE_OFFSET is almost
always 0xc0000000, and the start address of the RAM is 0x80000000 on a BeagleBone, so
the calculation becomes c0f72428 - 0xc0000000 + 0x80000000 = 80f72428.
Now you can use the U-Boot md command to show the log:

U-Boot#

md 80f72428

80f72428: 00000000 00000000 00210034 c6000000 ........4.!.....

80f72438: 746f6f42 20676e69 756e694c 6e6f2078 Booting Linux on

80f72448: 79687020 61636973 5043206c 78302055 physical CPU 0x

80f72458: 00000030 00000000 00000000 00730084 0.............s.

80f72468: a6000000 756e694c 65762078 6f697372 ....Linux versio

80f72478: 2e34206e 30312e31 68632820 40736972 n 4.1.10 (chris@

80f72488: 6c697562 29726564 63672820 65762063 builder) (gcc ve

80f72498: 6f697372 2e34206e 20312e39 6f726328 rsion 4.9.1 (cro

80f724a8: 6f747373 4e2d6c6f 2e312047 302e3032 sstool-NG 1.20.0

80f724b8: 20292029 53203123 5720504d 4f206465 ) ) #1 SMP Wed O

80f724c8: 32207463 37312038 3a31353a 47203335 ct 28 17:51:53 G

IMPORTANT NOTE
From Linux 3.5 onward, there is a 16-byte binary header for each line in the kernel log
buffer that encodes a timestamp, a log level, and other things. There is a discussion about it
in the Linux weekly news entitled Toward more reliable logging, at
https://lwn.net/Articles/492125/.
In this section, we examined how kernel code can be debugged at the source level using
kgdb. Then we looked at setting breakpoints and printing backtraces inside the kdb shell.
Lastly, we learned how to read kernel Oops messages either from a console using dmesg or
the U-Boot command line.

Summary
Knowing how to use GDB for interactive debugging is a useful tool in the embedded
system developer's tool chest. It is a stable, well-documented, and well-known entity. It has
the ability to debug remotely by placing an agent on the target, be it gdbserver for
applications or kgdb for kernel code, and although the default command-line user interface
takes a while to get used to, there are many alternative frontends. The three I mentioned
were TUI, DDD, and Visual Studio Code. Eclipse is another popular frontend that supports
debugging with GDB by way of the CDT plugin. I will refer you to the references in the

https://lwn.net/Articles/492125/


Further reading section for information on how to configure CDT to work with a cross
toolchain and connect to a remote device.
A second and equally important way to approach debugging is to collect crash reports and
analyze them offline. In this category, we looked at application core dumps and kernel Oops
messages.
However, this is only one way of identifying flaws in programs. In the next chapter, I will
talk about profiling and tracing as ways of analyzing and optimizing programs.

Further reading
The following resources have further information on the topics introduced in this chapter:

The Art of Debugging with GDB, DDD, and Eclipse, by Norman Matloff and Peter 
Jay Salzman
GDB Pocket Reference, by Arnold Robbins
Python Interpreter in GNU Debugger, by crazyguitar:
https://www.pythonsheets.com/appendix/python-gdb.html
Extending GDB with Python, by Lisa Roach: https://www.youtube.com/watch?
v=xt9v5t4_zvE
Cross-compiling with CMake and VS Code, by Enes ÖZTÜRK: https://enes-
ozturk.medium.com/cross-compiling-with-cmake-and-vscode-9ca4976fdd1
Remote Debugging with GDB, by Enes ÖZTÜRK: https://enes-
ozturk.medium.com/remote-debugging-with-gdb-b4b0ca45b8c1
Getting to grips with Eclipse: cross compiling: https://2net.co.uk/tutorial/eclipse-cross-
compile
Getting to grips with Eclipse: remote access and debugging:
https://2net.co.uk/tutorial/eclipse-rse

https://www.pythonsheets.com/appendix/python-gdb.html
https://www.youtube.com/watch?v=xt9v5t4_zvE
https://enes-ozturk.medium.com/cross-compiling-with-cmake-and-vscode-9ca4976fdd1
https://enes-ozturk.medium.com/remote-debugging-with-gdb-b4b0ca45b8c1
https://2net.co.uk/tutorial/eclipse-cross-compile
https://2net.co.uk/tutorial/eclipse-rseS


Chapter 20: Profiling and Tracing
Interactive debugging using a source-level debugger, as described in the previous chapter,
can give you an insight into the way a program works, but it constrains your view to a small
body of code. In this chapter, we will look at the larger picture to see whether the system is
performing as intended.
Programmers and system designers are notoriously bad at guessing where bottlenecks are.
So if your system has performance issues, it is wise to start by looking at the full system
and then work down, using more sophisticated tools as you go. In this chapter, I'll begin
with the well-known top command as a means of getting an overview. Often the problem
can be localized to a single program, which you can analyze using the Linux profiler, perf.
If the problem is not so localized and you want to get a broader picture, perf can do that as
well. To diagnose problems associated with the kernel, I will describe some trace tools,
Ftrace, LTTng, and BPF, as a means of gathering detailed information.
I will also cover Valgrind, which, because of its sandboxed execution environment, can
monitor a program and report on code as it runs. I will complete the chapter with a
description of a simple trace tool, strace, which reveals the execution of a program by
tracing the system calls it makes.
In this chapter, we will cover the following topics:

The observer effect
Beginning to profile
Profiling with top
The poor man's profiler
Introducing perf
Tracing events
Introducing Ftrace
Using LTTng
Using BPF
Using Valgrind
Using strace

Technical requirements
To follow along with the examples, make sure you have the following:

A Linux-based host system
Buildroot 2020.02.9 LTS release



Etcher for Linux
A Micro SD card reader and card
A Raspberry Pi 4
A 5 V 3A USB-C power supply
An Ethernet cable and port for network connectivity

You should have already installed the 2020.02.9 LTS release of Buildroot for Chapter 6,
Selecting a Build System. If you have not, then refer to the System requirements section of
The Buildroot user manual (https://buildroot.org/downloads/manual/manual.html) before
installing Buildroot on your Linux host according to the instructions from Chapter 6.
All of the code for this chapter can be found in the Chapter20 folder from the book's
GitHub repository: https://github.com/PacktPublishing/Mastering-Embedded-Linux-
Programming-Third-Edition.

The observer effect
Before diving into the tools, let's talk about what the tools will show you. As is the case in
many fields, measuring a certain property affects the observation itself. Measuring the
electric current in a power supply line requires measuring the voltage drop over a small
resistor. However, the resistor itself affects the current. The same is true for profiling: every
system observation has a cost in CPU cycles, and that resource is no longer spent on the
application. Measurement tools also mess up caching behavior, eat memory space, and
write to disk, which all make it worse. There is no measurement without overhead.
I've often heard engineers say that the results of a profiling job were totally misleading.
That is usually because they were performing the measurements on something not
approaching a real situation. Always try to measure on the target, using release builds of the
software, with a valid dataset, using as few extra services as possible.
A release build usually implies building fully optimized binaries without debug symbols.
These production requirements severely limit the functionality of most profiling tools.

Symbol tables and compile flags
Once our system is up and running, we will hit a problem right away. While it is important
to observe the system in its natural state, the tools often need additional information to
make sense of the events.
Some tools require special kernel options. For the tools we are examining in this chapter,
this applies to perf, Ftrace, LTTng, and BPF. Therefore, you will probably have to build
and deploy a new kernel for these tests.

https://buildroot.org/downloads/manual/manual.html
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Third-Edition


Debug symbols are very helpful in translating raw program addresses into function names
and lines of code. Deploying executables with debug symbols does not change the
execution of the code, but it does require that you have copies of the binaries and the kernel
compiled with debug information, at least for the components you want to profile. Some
tools work best if you have these installed on the target system: perf, for example. The
techniques are the same as for general debugging as I discussed in Chapter 19, Debugging
with GDB.
If you want a tool to generate call graphs, you may have to compile with stack frames
enabled. If you want the tool to attribute addresses with lines of code accurately, you may
need to compile with lower levels of optimization.
Finally, some tools require instrumentation to be inserted into the program to capture
samples, so you will have to recompile those components. This applies to Ftrace and LTTng
for the kernel.
Be aware that the more you change the system you are observing, the harder it is to relate
the measurements you make to the production system.

TIP
It is best to adopt a wait-and-see approach, making changes only when the need is clear,
and being mindful that each time you do so, you will change what you are measuring.
Because the results of profiling can be so ambiguous, start with simple, easy-to-use tools
that are readily available before reaching for more complex and invasive instruments.

Beginning to profile
When looking at the entire system, a good place to start is with a simple tool such as 
top, which gives you an overview very quickly. It shows you how much memory is being
used, which processes are eating CPU cycles, and how this is spread across different cores
and times.
If top shows that a single application is using up all the CPU cycles in user space, then you
can profile that application using perf.
If two or more processes have a high CPU usage, there is probably something that is
coupling them together, perhaps data communication. If a lot of cycles are spent on system
calls or handling interrupts, then there may be an issue with the kernel configuration or with
a device driver. In either case, you need to start by taking a profile 
of the whole system, again using perf.
If you want to find out more about the kernel and the sequencing of events there, use
Ftrace, LTTng, or BPF.
There could be other problems that top will not help you with. If you have multi-threaded
code and there are problems with lockups, or if you have random data corruption, then
Valgrind plus the Helgrind plugin might be helpful. Memory leaks also fit into this
category; I covered memory-related diagnosis in Chapter 18, Managing Memory.



Before we get into these more-advanced profiling tools, let start with the most rudimentary
one that is found on most systems, including those in production.

Profiling with top
The top program is a simple tool that doesn't require any special kernel options or symbol
tables. There is a basic version in BusyBox and a more functional version in the procps
package, which is available in the Yocto Project and Buildroot. You may also want to
consider using htop, which has functionally similar to top but has a nicer user interface
(some people think).
To begin with, focus on the summary line of top, which is the second line if you are using
BusyBox and the third line if you are using top from procps. Here is an example, using
BusyBox's top:

Mem: 57044K used, 446172K free, 40K shrd, 3352K buff, 34452K cached

CPU: 58% usr 4% sys 0% nic 0% idle 37% io 0% irq 0% sirq

Load average: 0.24 0.06 0.02 2/51 105

PID PPID USER STAT VSZ %VSZ %CPU COMMAND

105 104 root R 27912 6% 61% ffmpeg -i track2.wav

[…]

The summary line shows the percentage of time spent running in various states, as shown in
this table:



In the preceding example, almost all of the time (58%) is spent in user mode, with a small
amount (4%) in system mode, so this is a system that is CPU-bound in user space. The first
line after the summary shows that just one application is responsible: ffmpeg. Any efforts
toward reducing CPU usage should be directed there.
Here is another example:

Mem: 13128K used, 490088K free, 40K shrd, 0K buff, 2788K cached

CPU: 0% usr 99% sys 0% nic 0% idle 0% io 0% irq 0% sirq

Load average: 0.41 0.11 0.04 2/46 97

PID PPID USER STAT VSZ %VSZ %CPU COMMAND

92 82 root R 2152 0% 100% cat /dev/urandom

[…]

This system is spending almost all of the time in kernel space (99% sys), as a result of cat
reading from /dev/urandom. In this artificial case, profiling cat by itself would not help,
but profiling the kernel functions that cat calls might.
The default view of top shows only processes, so the CPU usage is the total of all the
threads in the process. Press H to see information for each thread. Likewise, it aggregates
the time across all CPUs. If you are using the procps version of top, you can see a
summary per CPU by pressing the 1 key.



Once we have singled out the problem process using top, we can attach GDB to it.

The poor man's profiler
You can profile an application just by using GDB to stop it at arbitrary intervals to see what
it is doing. This is the poor man's profiler. It is easy to set up and is one way of gathering
profile data.
The procedure is simple:

1. Attach to the process using gdbserver (for a remote debug) or GDB (for a 
native debug). The process stops.

2. Observe the function it stopped in. You can use the backtrace GDB command 
to see the call stack.

3. Type continue so that the program resumes.
4. After a while, press Ctrl + C to stop it again, and go back to step 2.

If you repeat steps 2 to 4 several times, you will quickly get an idea of whether it is looping
or making progress, and if you repeat them often enough, you will get an idea of where the
hotspots in the code are.
There is a whole web page dedicated to this idea at http://poormansprofiler.org, together
with scripts that make it a little easier. I have used this technique many times over the years
with various operating systems and debuggers.
This is an example of statistical profiling, in which you sample the program state at
intervals. After a number of samples, you begin to learn the statistical likelihood of the
functions being executed. It is surprising how few you really need. Other statistical profilers
are perf record, OProfile, and gprof.
Sampling using a debugger is intrusive because the program is stopped for a significant
period while you collect the sample. Other tools can do this with much lower overhead.
One such tool is perf.

Introducing perf
perf is an abbreviation of the Linux performance event counter subsystem, 
perf_events, and also the name of the command-line tool for interacting with 
perf_events. Both have been part of the kernel since Linux 2.6.31. There is plenty of
useful information in the Linux source tree in tools/perf/Documentation as well as at
https://perf.wiki.kernel.org.
The initial impetus for developing perf was to provide a unified way to access the registers
of the performance measurement unit (PMU), which is part of most modern processor
cores. Once the API was defined and integrated into Linux, it became logical to extend it to
cover other types of performance counters.

http://poormansprofiler.org/
https://perf.wiki.kernel.org/


At its heart, perf is a collection of event counters with rules about when they actively
collect data. By setting the rules, you can capture data from the whole system, just the
kernel, or just one process and its children, and do it across all CPUs or just one CPU. It is
very flexible. With this one tool, you can start by looking at the whole system, then zero in
on a device driver that seems to be causing problems, an application that is running slowly,
or a library function that seems to be taking longer to execute than you thought.
The code for the perf command-line tool is part of the kernel, in the tools/perf directory.
The tool and the kernel subsystem are developed hand in hand, meaning that they must be
from the same version of the kernel. perf can do a lot. In this chapter, I will examine it only
as a profiler. For a description of its other capabilities, read the perf man pages and refer to
the documentation mentioned at the start of this section.
In addition to debug symbols, there are two configuration options we need to set to fully
enable perf in the kernel.

Configuring the kernel for perf
You need a kernel that is configured for perf_events, and you need the perf command
cross-compiled to run on the target. The relevant kernel configuration is
CONFIG_PERF_EVENTS, present in the General setup | Kernel Performance Events and
Counters menu.
If you want to profile using tracepoints—more on this subject later—also enable the options
described in the section about Ftrace. While you are there, it is worthwhile enabling
CONFIG_DEBUG_INFO as well.
The perf command has many dependencies, which makes cross-compiling it quite messy.
However, both the Yocto Project and Buildroot have target packages for it.
You will also need debug symbols on the target for the binaries that you are interested in
profiling; otherwise, perf will not be able to resolve addresses to meaningful symbols.
Ideally, you want debug symbols for the whole system, including the kernel. For the latter,
remember that the debug symbols for the kernel are in the vmlinux file.

Building perf with the Yocto Project
If you are using the standard linux-yocto kernel, perf_events is enabled already, so there
is nothing more to do.
To build the perf tool, you can add it explicitly to the target image dependencies, or you
can add the tools-profile feature. As I mentioned previously, you will probably want
debug symbols on the target image as well as the kernel vmlinux image. In total, this is
what you will need in conf/local.conf:

EXTRA_IMAGE_FEATURES = "debug-tweaks dbg-pkgs tools-profile"

IMAGE_INSTALL_append = "kernel-vmlinux"



Adding perf to a Buildroot-based image can be more involved depending on the source of
our default kernel configuration.

Building perf with Buildroot
Many Buildroot kernel configurations do not include perf_events, so you should begin by
checking that your kernel includes the options mentioned in the preceding section.
To cross-compile perf, run the Buildroot menuconfig and select the following:

BR2_LINUX_KERNEL_TOOL_PERF in Kernel | Linux Kernel Tools

To build packages with debug symbols and install them unstripped on the target, select
these two settings:

BR2_ENABLE_DEBUG in the Build options | build packages with debugging symbols
menu
BR2_STRIP = none in the Build options | strip command for binaries on target
menu

Then, run make clean, followed by make.
Once you have built everything, you will have to copy vmlinux into the target 
image manually.

Profiling with perf
You can use perf to sample the state of a program using one of the event counters and
accumulate samples over a period of time to create a profile. This is another example of
statistical profiling. The default event counter is called cycles, which is a generic hardware
counter that is mapped to a PMU register representing a count of cycles at the core clock
frequency.
Creating a profile using perf is a two-stage process: the perf record command captures
samples and writes them to a file named perf.data (by default), and then perf report
analyzes the results. Both commands are run on the target. The samples being collected are
filtered for the process and children of a command you specify. Here is an example of
profiling a shell script that searches for the linux string:

# perf record sh -c "find /usr/share | xargs grep linux > /dev/null"

[ perf record: Woken up 2 times to write data ]

[ perf record: Captured and wrote 0.368 MB perf.data (~16057 samples) ]

# ls -l perf.data

-rw------- 1 root root 387360 Aug 25 2015 perf.data

Now you can show the results from perf.data using the perf report command. There are
three user interfaces you can select on the command line:



--stdio: This is a pure-text interface with no user interaction. You will have to launch
perf report and annotate for each view of the trace.
--tui: This is a simple text-based menu interface with traversal between screens.
--gtk: This is a graphical interface that otherwise acts in the same way as --tui.

The default is TUI, as shown in this example:

Figure 20.1 – perf report TUI

perf is able to record the kernel functions executed on behalf of the processes because it
collects samples in kernel space.
The list is ordered with the most active functions first. In this example, all but one are
captured while grep is running. Some are in a library, libc-2.20, some are in a program,
busybox.nosuid, and some are in the kernel. We have symbol names for program and
library functions because all the binaries have been installed on the target with debug
information, and kernel symbols are being read from /boot/vmlinux. If you have vmlinux
in a different location, add -k <path> to the perf report command. Rather than storing
samples in perf.data, you can save them to a different file using perf record -o <file
name> and analyze them using perf report -i <file name>.



By default, perf record samples at a frequency of 1,000 Hz using the cycles counter.

TIP
A sampling frequency of 1,000 Hz may be higher than you really need and 
may be the cause of the observer effect. Try with lower rates; 100 Hz is enough for most
cases, in my experience. You can set the sample frequency using 
the -F option.
This is still not really making life easy; the functions at the top of the list are mostly low-
level memory operations, and you can be fairly sure that they have already been optimized.
Fortunately, perf record also gives us the ability to crawl up the call stack and see where
these functions are being invoked.

Call graphs
It would be nice to step back and see the surrounding context of these costly functions. You
can do that by passing the -g option to perf record to capture the backtrace from each
sample.
Now, perf report shows a plus sign (+) where the function is part of a call chain. You can
expand the trace to see the functions lower down in the chain:



Figure 20.2 – perf report (call graphs)

IMPORTANT NOTE
Generating call graphs relies on the ability to extract call frames from the stack, just as is
necessary for backtraces in GDB. The information needed to unwind stacks is encoded in
the debug information of the executables, but not all combinations of architecture and
toolchains are capable of doing so.
Backtraces are nice, but where is the assembler, or better yet, the source code, for 
these functions?

perf annotate
Now that you know which functions to look at, it would be nice to step inside and see the
code and to have hit counts for each instruction. That is what perf annotate does, by
calling down to a copy of objdump installed on the target. You just need to use perf
annotate in place of perf report.



perf annotate requires symbol tables for the executables and vmlinux. Here is an example
of an annotated function:

Figure 20.3 – perf annotate (assembler)

If you want to see the source code interleaved with the assembler, you can copy the relevant
source files to the target device. If you are using the Yocto Project and build with the dbg-
pkgs extra image feature, or have installed the individual -dbg package, then the source will
have been installed for you in /usr/src/debug. Otherwise, you can examine the debug
information to see the location of the source code:

$ arm-buildroot-linux-gnueabi-objdump --dwarf lib/libc-2.19.so | grep
DW_AT_comp_dir

<3f> DW_AT_comp_dir : /home/chris/buildroot/output/build/hostgcc-
initial-4.8.3/build/arm-buildroot-linux-gnueabi/libgcc

The path on the target should be exactly the same as the path you can see in 
DW_AT_comp_dir.
Here is an example of annotation with the source and assembler code:



Figure 20.4 – perf annotate (source code)

Now we can see the corresponding C source code above cmp r0 and below the str r3,
[fp, #-40] instruction.
This concludes our coverage of perf. While there are other statistical sampling profilers,
such as OProfile and gprof, that predate perf, these tools have fallen out of favor in recent
years, so I chose to omit them. Next, we will look at event tracers.

Tracing events
The tools we have seen so far all use statistical sampling. You often want to know more
about the ordering of events so that you can see them and relate them to each other.
Function tracing involves instrumenting the code with tracepoints that capture information
about the event, and may include some or all of the following:

A timestamp
Context, such as the current PID
Function parameters and return values



A callstack

It is more intrusive than statistical profiling and it can generate a large amount of data. The
latter problem can be mitigated by applying filters when the sample is captured and later on
when viewing the trace.
I will cover three trace tools here: the kernel function tracers Ftrace, LTTng, and BPF.

Introducing Ftrace
The kernel function tracer Ftrace evolved from work done by Steven Rostedt and many
others as they were tracking down the causes of high scheduling latency in real-time
applications. Ftrace appeared in Linux 2.6.27 and has been actively developed since then.
There are a number of documents describing kernel tracing in the kernel source in
Documentation/trace.
Ftrace consists of a number of tracers that can log various types of activity in the kernel.
Here, I am going to talk about the function and function_graph tracers and the event
tracepoints. In Chapter 21, Real-Time Programming, I will revisit Ftrace and use it to show
real-time latencies.
The function tracer instruments each kernel function so that calls can be recorded and
timestamped. As a matter of interest, it compiles the kernel with the -pg switch to inject the
instrumentation. The function_graph tracer goes further and records both the entry and
exit of functions so that it can create a call graph. The event tracepoints feature also records
parameters associated with the call.
Ftrace has a very embedded-friendly user interface that is entirely implemented through
virtual files in the debugfs filesystem, meaning that you do not have to install any tools 
on the target to make it work. Nevertheless, there are other user interfaces if you prefer:
trace-cmd is a command-line tool that records and views traces and is available in
Buildroot (BR2_PACKAGE_TRACE_CMD) and the Yocto Project (trace-cmd). There is a
graphical trace viewer named KernelShark that is available as a package for the Yocto
Project.
Like perf, enabling Ftrace requires setting certain kernel configuration options.

Preparing to use Ftrace
Ftrace and its various options are configured in the kernel configuration menu. You will
need the following as a minimum:

CONFIG_FUNCTION_TRACER from the Kernel hacking | Tracers | Kernel Function
Tracer menu

For reasons that will become clear later, you would be well advised to turn on these options
as well:



CONFIG_FUNCTION_GRAPH_TRACER in the Kernel hacking | Tracers | Kernel Function
Graph Tracer menu
CONFIG_DYNAMIC_FTRACE in the Kernel hacking | Tracers | enable/disable function
tracing dynamically menu

Since the whole thing is hosted in the kernel, there is no user space configuration to 
be done.

Using Ftrace
Before you can use Ftrace, you have to mount the debugfs filesystem, which by convention
goes in the /sys/kernel/debug directory:

# mount -t debugfs none /sys/kernel/debug

All the controls for Ftrace are in the /sys/kernel/debug/tracing directory; there is even a
mini HOWTO in the README file there.
This is the list of tracers available in the kernel:

# cat /sys/kernel/debug/tracing/available_tracers

blk function_graph function nop

The active tracer is shown by current_tracer, which initially will be the null 
tracer, nop.
To capture a trace, select the tracer by writing the name of one of the available_tracers
to current_tracer, and then enable tracing for a short while, as shown here:

# echo function > /sys/kernel/debug/tracing/current_tracer

# echo 1 > /sys/kernel/debug/tracing/tracing_on

# sleep 1

# echo 0 > /sys/kernel/debug/tracing/tracing_on

In that one second, the trace buffer will have been filled with the details of every function
called by the kernel. The format of the trace buffer is plain text, as described in
Documentation/trace/ftrace.txt. You can read the trace buffer from the trace file:

# cat /sys/kernel/debug/tracing/trace

# tracer: function

#

# entries-in-buffer/entries-written: 40051/40051   #P:1

#

#                     _-----=> irqs-off

#                    / _----=> need-resched

#                   | / _---=> hardirq/softirq

#                   || / _--=> preempt-depth

#                   ||| /     delay

# TASK-PID   CPU#   ||||   TIMESTAMP   FUNCTION

#   | |       |     ||||       |          |



sh-361 [000] ...1 992.990646: mutex_unlock <-rb_simple_write

sh-361 [000] ...1 992.990658: __fsnotify_parent <-vfs_write

sh-361 [000] ...1 992.990661: fsnotify <-vfs_write

sh-361 [000] ...1 992.990663: __srcu_read_lock <-fsnotify

sh-361 [000] ...1 992.990666: preempt_count_add <-__srcu_read_lock

sh-361 [000] ...2 992.990668: preempt_count_sub <-__srcu_read_lock

sh-361 [000] ...1 992.990670: __srcu_read_unlock <-fsnotify

sh-361 [000] ...1 992.990672: __sb_end_write <-vfs_write

sh-361 [000] ...1 992.990674: preempt_count_add <-__sb_end_write

[…]

You can capture a large number of data points in just one second—in this case, over 40,000.
As with profilers, it is difficult to make sense of a flat function list like this. If you select the
function_graph tracer, Ftrace captures call graphs like this:

# tracer: function_graph

#

# CPU  DURATION            FUNCTION CALLS

# |     |   |               |   |   |   |

0) + 63.167 us   |              } /* cpdma_ctlr_int_ctrl */

0) + 73.417 us   |            } /* cpsw_intr_disable */

0)               |            disable_irq_nosync() {

0)               |              __disable_irq_nosync() {

0)               |                __irq_get_desc_lock() {

0)   0.541 us    |                  irq_to_desc();

0)   0.500 us    |                  preempt_count_add();

0) + 16.000 us   |                }

0)               |                __disable_irq() {

0)   0.500 us    |                  irq_disable();

0)   8.208 us    |                }

0)               |                __irq_put_desc_unlock() {

0)   0.459 us    |                  preempt_count_sub();

0)   8.000 us    |                }

0) + 55.625 us   |              }

0) + 63.375 us   |            }

Now you can see the nesting of the function calls, delimited by braces, { and }. At the
terminating brace, there is a measurement of the time taken in the function, annotated with
a plus sign (+) if it takes more than 10 µs and an exclamation mark (!) if it takes more than
100 µs.
You are often only interested in the kernel activity caused by a single process or thread, 
in which case you can restrict the trace to the one thread by writing the thread ID to 
set_ftrace_pid.

Dynamic Ftrace and trace filters



Enabling CONFIG_DYNAMIC_FTRACE allows Ftrace to modify the function trace sites at
runtime, which has a couple of benefits. Firstly, it triggers additional build-time processing
of the trace function probes, which allows the Ftrace subsystem to locate them at boot time
and overwrite them with NOP instructions, thus reducing the overhead of the function trace
code to almost nothing. You can then enable Ftrace in production or near-production
kernels with no impact on performance.
The second advantage is that you can selectively enable function trace sites rather than
tracing everything. The list of functions is put into available_filter_functions; there are
several tens of thousands of them. You can selectively enable function traces as you need
them by copying the name from available_filter_functions to set_ftrace_filter and
then stop tracing that function by writing the name to set_ftrace_notrace. You can also
use wildcards and append names to the list. For example, suppose you are interested in tcp
handling:

# cd /sys/kernel/debug/tracing

# echo "tcp*" > set_ftrace_filter

# echo function > current_tracer

# echo 1 > tracing_on

Run some tests and then look at trace:
# cat trace

# tracer: function

#

# entries-in-buffer/entries-written: 590/590   #P:1

#

#                     _-----=> irqs-off

#                    / _----=> need-resched

#                   | / _---=> hardirq/softirq

#                   || / _--=> preempt-depth

#                   ||| /     delay

#  TASK-PID   CPU# ||||   TIMESTAMP  FUNCTION

#    | |       |   ||||       |         |

dropbear-375 [000] ...1 48545.022235: tcp_poll <-sock_poll

dropbear-375 [000] ...1 48545.022372: tcp_poll <-sock_poll

dropbear-375 [000] ...1 48545.022393: tcp_sendmsg <-inet_sendmsg

dropbear-375 [000] ...1 48545.022398: tcp_send_mss <-tcp_sendmsg

dropbear-375 [000] ...1 48545.022400: tcp_current_mss <-tcp_send_mss

[…]

The set_ftrace_filter function can also contain commands, for example, to start and
stop tracing when certain functions are executed. There isn't space to go into these details
here, but if you want to find out more, read the Filter commands section in
Documentation/trace/ftrace.txt.

Trace events



The function and function_graph tracers described in the preceding section record only
the time at which the function was executed. The trace events feature also records
parameters associated with the call, making the trace more readable and informative. For
example, instead of just recording that the kmalloc function has been called, a trace event
will record the number of bytes requested and the returned pointer. Trace events are used in
perf and LTTng as well as Ftrace, but the development of the trace events subsystem was
prompted by the LTTng project.
It takes effort from kernel developers to create trace events, since each one is different.
They are defined in the source code using the TRACE_EVENT macro; there are over a
thousand of them now. You can see the list of events available at runtime in
/sys/kernel/debug/tracing/available_events. They are named subsystem:function,
for example, kmem:kmalloc. Each event is also represented by a subdirectory in
tracing/events/[subsystem]/[function], as demonstrated here:

# ls events/kmem/kmalloc

enable filter format id trigger

The files are as follows:
enable: You write a 1 to this file to enable the event.
filter: This is an expression that must evaluate to true for the event to be traced.
format: This is the format of the event and parameters.
id: This is a numeric identifier.
trigger: This is a command that is executed when the event occurs using the syntax
defined in the Filter commands section of Documentation/trace/ftrace.txt.

I will show you a simple example involving kmalloc and kfree. Event tracing does not
depend on the function tracers, so begin by selecting the nop tracer:

# echo nop > current_tracer

Next, select the events to trace by enabling each one individually:
# echo 1 > events/kmem/kmalloc/enable

# echo 1 > events/kmem/kfree/enable

You can also write the event names to set_event, as shown here:
# echo "kmem:kmalloc kmem:kfree" > set_event

Now, when you read the trace, you can see the functions and their parameters:
# tracer: nop

#

# entries-in-buffer/entries-written: 359/359   #P:1

#

#                      _-----=> irqs-off

#                     / _----=> need-resched

#                    | / _---=> hardirq/softirq

#                    || / _--=> preempt-depth

#                    ||| /     delay



#   TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION

#      | |       |   ||||       |         |

     cat-382   [000] ...1  2935.586706: kmalloc:call_site=c0554644
ptr=de515a00

        bytes_req=384 bytes_alloc=512

        gfp_flags=GFP_ATOMIC|GFP_NOWARN|GFP_NOMEMALLOC

     cat-382   [000] ...1  2935.586718: kfree: call_site=c059c2d8 ptr=
(null)

Exactly the same trace events are visible in perf as tracepoint events.
Since there is no bloated user space component to build, Ftrace is well-suited for deploying
to most embedded targets. Next, we will look at another popular event tracer whose origins
predate those of Ftrace.

Using LTTng
The Linux Trace Toolkit (LTT) project was started by Karim Yaghmour as a means of
tracing kernel activity and was one of the first trace tools generally available for the Linux
kernel. Later, Mathieu Desnoyers took up the idea and re-implemented it as a next-
generation trace tool, LTTng. It was then expanded to cover user space traces as well as the
kernel. The project website is at https://lttng.org/ and contains a comprehensive user
manual.
LTTng consists of three components:

A core session manager
A kernel tracer implemented as a group of kernel modules
A user space tracer implemented as a library

In addition to those, you will need a trace viewer such as Babeltrace
(https://babeltrace.org) or the Eclipse Trace Compass plugin to display and filter the raw
trace data on the host or target.
LTTng requires a kernel configured with CONFIG_TRACEPOINTS, which is enabled when you
select Kernel hacking | Tracers | Kernel Function Tracer.
The description that follows refers to LTTng version 2.5; other versions may be different.

LTTng and the Yocto Project
You need to add these packages to the target dependencies to conf/local.conf:

IMAGE_INSTALL_append = " lttng-tools lttng-modules lttng-ust"

If you want to run Babeltrace on the target, also append the babeltrace package.

https://lttng.org/
https://babeltrace.org/


LTTng and Buildroot
You need to enable the following:

BR2_PACKAGE_LTTNG_MODULES in the Target packages | Debugging, profiling and
benchmark | lttng-modules menu
BR2_PACKAGE_LTTNG_TOOLS in the Target packages | Debugging, profiling and
benchmark | lttng-tools menu

For user space trace tracing, enable this:
BR2_PACKAGE_LTTNG_LIBUST in the Target packages | Libraries | Other, enable
lttng-libust menu

There is a package called lttng-babletrace for the target. Buildroot builds the
babeltrace host automatically and places it in output/host/usr/bin/babeltrace.

Using LTTng for kernel tracing
LTTng can use the set of ftrace events described previously as potential tracepoints.
Initially, they are disabled.
The control interface for LTTng is the lttng command. You can list the kernel probes using
the following:

# lttng list --kernel

Kernel events:

-------------

writeback_nothread (loglevel: TRACE_EMERG (0)) (type: tracepoint)

writeback_queue (loglevel: TRACE_EMERG (0)) (type: tracepoint)

writeback_exec (loglevel: TRACE_EMERG (0)) (type: tracepoint)

[…]

Traces are captured in the context of a session, which in this example is called test:
# lttng create test

Session test created.

Traces will be written in /home/root/lttng-traces/test-20150824-140942

# lttng list

Available tracing sessions:

1) test (/home/root/lttng-traces/test-20150824-140942) [inactive]

Now enable a few events in the current session. You can enable all kernel tracepoints using
the --all option, but remember the warning about generating too much trace data. Let's
start with a couple of scheduler-related trace events:

# lttng enable-event --kernel sched_switch,sched_process_fork

Check that everything is set up:



# lttng list test

Tracing session test: [inactive]

    Trace path: /home/root/lttng-traces/test-20150824-140942

    Live timer interval (usec): 0

=== Domain: Kernel ===

Channels:

-------------

- channel0: [enabled]

Attributes:

      overwrite mode: 0

      subbufers size: 26214

      number of subbufers: 4

      switch timer interval: 0

      read timer interval: 200000

      trace file count: 0

      trace file size (bytes): 0

      output: splice()

Events:

      sched_process_fork (loglevel: TRACE_EMERG (0)) (type: tracepoint)
[enabled]

      sched_switch (loglevel: TRACE_EMERG (0)) (type: tracepoint)
[enabled]

Now start tracing:
# lttng start

Run the test load, and then stop tracing:
# lttng stop

Traces for the session are written to the session directory, lttng-

traces/<session>/kernel.
You can use the Babeltrace viewer to dump the raw trace data in text format. In this case, I
ran it on the host computer:

$ babeltrace lttng-traces/test-20150824-140942/kernel

The output is too verbose to fit on this page, so I will leave it as an exercise for you to
capture and display a trace in this way. The text output from Babeltrace does have the
advantage that it is easy to search for strings using grep and similar commands.
A good choice for a graphical trace viewer is the Trace Compass plugin for Eclipse, which
is now part of the Eclipse IDE for the C/C++ developer bundle. Importing the trace data
into Eclipse is characteristically fiddly. Briefly, you need to follow these steps:

1. Open the Tracing perspective.
2. Create a new project by selecting File | New | Tracing project.
3. Enter a project name and click on Finish.
4. Right-click on the New Project option in the Project Explorer menu and 

select Import.



5. Expand Tracing, and then select Trace Import.
6. Browse to the directory containing the traces (for example, test-20150824-140942),

tick the box to indicate which subdirectories you want (it might be kernel), and click
on Finish.

7. Expand the project and, within that, expand Traces[1], and then within that, double-
click on kernel.

Now, let's switch gears away from LTTng and jump headfirst into the latest and greatest
event tracer for Linux.

Using BPF
BPF (Berkeley Packet Filter) is a technology that was first introduced in 1992 to capture,
filter, and analyze network traffic. In 2013, Alexi Starovoitov undertook a rewrite of BPF
with help from Daniel Borkmann. Their work, then known as eBPF (extended BPF), was
merged into the kernel in 2014, where it has been available since Linux 3.15. BPF provides
a sandboxed execution environment for running programs inside the Linux kernel. BPF
programs are written in C and are just-in-time (JIT) compiled to native code. Before that
can happen, the intermediate BPF bytecode must first pass through a series of safety checks
so that a program cannot crash the kernel.
Despite its networking origins, BPF is now a general-purpose virtual machine running
inside the Linux kernel. By making it easy to run small programs on specific kernel and
application events, BPF has quickly emerged as the most powerful tracer for Linux. Like
what cgroups did for containerized deployments, BPF has the potential to revolutionize
observability by enabling users to fully instrument production systems. Netflix and
Facebook make extensive use of BPF across their microservices and cloud infrastructure for
performance analysis and thwarting distributed denial of service (DDoS) attacks.
The tooling around BPF is evolving, with BPF Compiler Collection (BCC) and bpftrace
establishing themselves as the two most prominent frontends. Brendan Gregg was deeply
involved in both projects and has written about BPF extensively in his book BPF
Performance Tools: Linux System and Application Observability, Addison-Wesley. With so
many possibilities covering such a vast scope, new technology such as BPF can seem
overwhelming. But much like cgroups, we don't need to understand how BPF works to start
making use of it. BCC comes with several ready-made tools and examples that we can
simply run from the command line.

Configuring the kernel for BPF
BCC requires a Linux kernel version of 4.1 or newer. At the time of writing, BCC only
supports a few 64-bit CPU architectures, severely limiting the use of BPF in embedded



systems. Fortunately, one of those 64-bit architectures is aarch64, so we can still run BCC
on a Raspberry Pi 4. Let's begin by configuring a BPF-enabled kernel for that image:

$ cd buildroot

$ make clean

$ make raspberrypi4_64_defconfig

$ make menuconfig

BCC uses LLVM to compile BPF programs. LLVM is a very large C++ project, so it needs
a toolchain with wchar, threads, and other features to build.

TIP
A package named ply (https://github.com/iovisor/ply) was merged into Buildroot on
January 23, 2021, and should be included in the 2021.02 LTS release of Buildroot. ply is a
lightweight, dynamic tracer for Linux that leverages BPF so that probes can be attached to
arbitrary points in the kernel. Unlike BCC, ply does not rely on LLVM and has no required
external dependencies aside from libc. This makes it much easier to port to embedded
CPU architectures such as arm and powerpc.
Before configuring our kernel for BPF, let's select an external toolchain and modify
raspberrypi4_64_defconfig to accommodate BCC:

1. Enable use of an external toolchain by navigating to Toolchain | Toolchain type |
External toolchain and selecting that option.

2. Back out of External toolchain and open the Toolchain submenu. Select the most
recent ARM AArch64 toolchain as your external toolchain.

3. Back out of the Toolchain page and drill down into System configuration | /dev
management. Select Dynamic using devtmpfs + eudev.

4. Back out of /dev management and select Enable root login with password. Open
Root password and enter a non-empty password in the text field.

5. Back out of the System configuration page and drill down into Filesystem images.
Increase the exact size value to 2G so that there is enough space for the kernel source
code.

6. Back out of Filesystem images and drill down into Target packages | Networking
applications. Select the dropbear package to enable scp and ssh access to the target.
Note that dropbear does not allow root scp and ssh access without a password.

7. Back out of Network applications and drill down into Miscellaneous target packages.
Select the haveged package so programs don't block waiting for 
/dev/urandom to initialize on the target.

8. Save your changes and exit menuconfig.

Now, overwrite configs/raspberrypi4_64_defconfig with your menuconfig changes and
prepare the Linux kernel source for configuration:

$ make savedefconfig

$ make linux-configure

https://github.com/iovisor/ply


The make linux-configure command will download and install the external toolchain and
build some host tools before fetching, extracting, and configuring the kernel source code.
At the time of writing, the raspberrypi4_64_defconfig from the 2020.02.9 LTS release of
Buildroot still points to a custom 4.19 kernel source tarball from the Raspberry Pi
Foundation's GitHub fork. Inspect the contents of your raspberrypi4_64_defconfig to
determine what version of the kernel you are on. Once make linux-configure is done
configuring the kernel, we can reconfigure it for BPF:

$ make linux-menuconfig

To search for a specific kernel configuration option from the interactive menu, hit / and
enter a search string. The search should return a numbered list of matches. Entering a given
number takes you directly to that configuration option.
At a minimum, we need to select the following to enable kernel support for BPF:

CONFIG_BPF=y

CONFIG_BPF_SYSCALL=y

We also need to add the following for BCC:
CONFIG_NET_CLS_BPF=m

CONFIG_NET_ACT_BPF=m

CONFIG_BPF_JIT=y

Linux kernel versions 4.1 to 4.6 need the following flag:
CONFIG_HAVE_BPF_JIT=y

Linux kernel versions 4.7 and later need this flag instead:
CONFIG_HAVE_EBPF_JIT=y

From Linux kernel version 4.7 onward, add the following so that users can attach BPF
programs to kprobe, uprobe, and tracepoint events:

CONFIG_BPF_EVENTS=y

From Linux kernel version 5.2 onward, add the following for the kernel headers:
CONFIG_IKHEADERS=m

BCC needs to read the kernel headers to compile BPF programs, so selecting 
CONFIG_IKHEADERS makes them accessible by loading a kheaders.ko module.
To run the BCC networking examples, we also need the following modules:

CONFIG_NET_SCH_SFQ=m

CONFIG_NET_ACT_POLICE=m

CONFIG_NET_ACT_GACT=m

CONFIG_DUMMY=m

CONFIG_VXLAN=m

Make sure to save your changes when exiting make linux-menuconfig so that they get
applied to output/build/linux-custom/.config before building your BPF-enabled
kernel.

Building a BCC toolkit with Buildroot



With the necessary kernel support for BPF now in place, let's add the user space libraries
and tools to our image. At the time of writing, Jugurtha Belkalem and others have been
working diligently to integrate BCC into Buildroot but their patches have yet to be merged.
While an LLVM package has already been incorporated into Buildroot, there is no option to
select the BPF backend needed by BCC for compilation. The new bcc and updated llvm
package configuration files can be found in the MELP/Chapter20/ directory. To copy them
over to your 2020.02.09 LTS installation of Buildroot, do the following:

$ cp -a MELP/Chapter20/buildroot/* buildroot

Now let's add the bcc and llvm packages to raspberrypi4_64_defconfig:
$ cd buildroot

$ make menuconfig

If your version of Buildroot is 2020.02.09 LTS and you copied the buildroot overlay from
MELP/Chapter20 correctly, then there should now be a bcc package available under
Debugging, profiling and benchmark. To add the bcc package to your system image,
perform the following steps:

1. Navigate to Target packages | Debugging, profiling and benchmark and 
select bcc.

2. Back out of Debugging, profiling and benchmark and drill down into Libraries |
Other. Verify that clang, llvm, and LLVM's BPF backend are all selected.

3. Back out of Libraries | Other and drill down into Interpreter languages and
scripting. Verify that python3 is selected so that you can run the various tools and
examples that come bundled with BCC.

4. Back out of Interpreter languages and scripting and select Show packages that are
also provided by busybox under BusyBox from the Target packages page.

5. Drill down into System tools and verify that tar is selected for extracting the 
kernel headers.

6. Save your changes and exit menuconfig.

Overwrite configs/raspberrypi4_64_defconfig with your menuconfig changes again
and build the image:

$ make savedefconfig

$ make

LLVM and Clang will take a long time to compile. Once the image is done building, use
Etcher to write the resulting output/images/sdcard.img file to a micro SD card. Lastly,
copy the kernel sources from output/build/linux-custom to a new
/lib/modules/<kernel version>/build directory on the root partition of the micro SD
card. This last step is critical because BCC needs access to the kernel source code to
compile BPF programs.
Insert the finished micro SD into your Raspberry Pi 4, plug it into your local network with
an Ethernet cable, and power the device up. Use arp-scan to locate your Raspberry Pi 4's
IP address and SSH into it as root using the password you set in the previous section. I



used temppwd for the root password in the configs/rpi4_64_bcc_defconfig that I
included with my MELP/Chapter20/buildroot overlay. Now, we are ready to gain some
firsthand experience of experimenting with BPF.

Using BPF tracing tools
Doing almost anything with BPF, including running the BCC tools and examples, requires
root privileges, which is why we enabled root login via SSH. Another prerequisite is
mounting debugfs as follows:

# mount -t debugfs none /sys/kernel/debug

The directory where the BCC tools are located is not in the PATH environment, so navigate
there for easier execution:

# cd /usr/share/bcc/tools

Let's start with a tool that displays the task on-CPU time as a histogram:
# ./cpudist

cpudist shows how long tasks spent on the CPU before being descheduled:



Figure 20.5 – cpudist

If instead of a histogram you see the following error, then you forgot to copy the kernel
sources to the micro SD card:

modprobe: module kheaders not found in modules.dep

Unable to find kernel headers. Try rebuilding kernel with
CONFIG_IKHEADERS=m (module) or installing the kernel development package
for your running kernel version.

chdir(/lib/modules/4.19.97-v8/build): No such file or directory

[…]

Exception: Failed to compile BPF module <text>

Another useful system-wide tool is llcstat, which traces cache reference and cache miss
events and summarizes them by PID and CPU:



Figure 20.6 – llcstat

Not all BCC tools require us to hit Ctrl + C to end. Some such as llcstat take a sample
period as a command-line argument.
We can get more specific and zoom in on specific functions using tools such as funccount,
which takes a pattern as a command-line argument:



Figure 20.7 – funccount

In this instance, we are tracing all kernel functions containing tcp followed by send in their
names. Many BCC tools can also be used to trace functions in user space. That requires
either debug symbols or instrumenting the source code with user statically defined
tracepoint (USDT) probes.
Of special interest to embedded developers are the hardirqs tools, which measure the time
spent in the kernel servicing hard interrupts:

Figure 20.8 – hardirqs



Writing your own general-purpose or custom BCC tracing tools in Python is easier than you
might expect. You can find several examples to read and fiddle with in the
/usr/share/bcc/examples/tracing directory that comes with BCC.
This concludes our coverage of Linux event tracing tools: Ftrace, LTTng, and BPF. All of
them require at least some kernel configuration to work. Valgrind offers more profiling
tools that operate entirely from the comfort of user space.

Using Valgrind
I introduced Valgrind in Chapter 18, Managing Memory, as a tool for identifying memory
problems using the memcheck tool. Valgrind has other useful tools for application profiling.
The two I am going to look at here are Callgrind and Helgrind. Since Valgrind works by
running the code in a sandbox, it can check the code as it runs and report certain behaviors,
which native tracers and profilers cannot do.

Callgrind
Callgrind is a call graph-generating profiler that also collects information about processor
cache hit rate and branch prediction. Callgrind is only useful if your bottleneck is CPU-
bound. It's not useful if heavy I/O or multiple processes are involved.
Valgrind does not require kernel configuration, but it does need debug symbols. 
It is available as a target package in both the Yocto Project and Buildroot 
(BR2_PACKAGE_VALGRIND).
You run Callgrind in Valgrind on the target like so:

# valgrind --tool=callgrind <program>

This produces a file called callgrind.out.<PID>, which you can copy to the host and
analyze with callgrind_annotate.
The default is to capture data for all the threads together in a single file. If you add the --
separate-threads=yes option when capturing, there will be profiles for each of the threads
in files named callgrind.out.<PID>-<thread id>, for example, callgrind.out.122-01
and callgrind.out.122-02.
Callgrind can simulate the processor L1/L2 cache and report on cache misses. Capture the
trace with the --simulate-cache=yes option. L2 misses are much more expensive than L1
misses, so pay attention to code with high D2mr or D2mw counts.
The raw output from Callgrind can be overwhelming and difficult to untangle. A visualizer
such as KCachegrind (https://kcachegrind.github.io/html/Home.html) can help you
navigate the mountains of data Callgrind collects.

Helgrind

https://kcachegrind.github.io/html/Home.html


Helgrind is a thread-error detector for detecting synchronization errors in C, C++, and
Fortran programs that include POSIX threads.
Helgrind can detect three classes of errors. Firstly, it can detect the incorrect use of the API.
Some examples are unlocking a mutex that is already unlocked, unlocking a mutex that was
locked by a different thread, or not checking the return value of certain pthread functions.
Secondly, it monitors the order in which threads acquire locks to detect cycles that may
result in deadlocks (also known as the deadly embrace). Finally, it detects data races, which
can happen when two threads access a shared memory location without using suitable locks
or other synchronization to ensure single-threaded access.
Using Helgrind is simple; you just need this command:

# valgrind --tool=helgrind <program>

It prints problems and potential problems as it finds them. You can direct these messages to
a file by adding --log-file=<filename>.
Callgrind and Helgrind rely on Valgrind's virtualization for their profiling and deadlock
detection. This heavyweight approach slows down the execution of your programs,
increasing the likelihood of the observer effect.
Sometimes the bugs in our programs are so reproducible and easy to isolate that a simpler,
less invasive tool is enough to quickly debug them. That tool more often than not is strace.

Using strace
I started the chapter with a simple and ubiquitous tool, top, and I will finish with another:
strace. It is a very simple tracer that captures system calls made by a program and,
optionally, its children. You can use it to do the following:

Learn which system calls a program makes.
Find those system calls that fail, together with the error code. I find this useful 
if a program fails to start but doesn't print an error message or if the message is 
too general.
Find which files a program opens.
Find out which syscalls a running program is making, for example, to see whether it
is stuck in a loop.

There are many more examples online; just search for strace tips and tricks. Everybody 
has their own favorite story, for example, https://alexbilson.dev/posts/strace-debug/.
strace uses the ptrace(2) function to hook calls as they are made from user space to the
kernel. If you want to know more about how ptrace works, the manual page is detailed and
surprisingly readable.
The simplest way to get a trace is to run the command as a parameter to strace, as shown
here (the listing has been edited to make it clearer):

# strace ./helloworld

https://alexbilson.dev/posts/strace-debug/


execve("./helloworld", ["./helloworld"], [/* 14 vars */]) = 0

brk(0)                                  = 0x11000

uname({sys="Linux", node="beaglebone", ...}) = 0

mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1,
0) = 0xb6f40000

access("/etc/ld.so.preload", R_OK)      = -1 ENOENT (No such file or
directory)

open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3

fstat64(3, {st_mode=S_IFREG|0644, st_size=8100, ...}) = 0

mmap2(NULL, 8100, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb6f3e000

close(3)                                = 0

open("/lib/tls/v7l/neon/vfp/libc.so.6", O_RDONLY|O_CLOEXEC) = -1

ENOENT (No such file or directory)

[...]

open("/lib/libc.so.6", O_RDONLY|O_CLOEXEC) = 3

read(3,

"\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0(\0\1\0\0\0$`\1\0004\0\0\0"...,

512) = 512

fstat64(3, {st_mode=S_IFREG|0755, st_size=1291884, ...}) = 0

mmap2(NULL, 1328520, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE,

3, 0) = 0xb6df9000

mprotect(0xb6f30000, 32768, PROT_NONE)  = 0

mmap2(0xb6f38000, 12288, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x137000) = 0xb6f38000

mmap2(0xb6f3b000, 9608, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0xb6f3b000

close(3)

[...]

write(1, "Hello, world!\n", 14Hello, world!

    )         = 14

exit_group(0)                           = ?

+++ exited with 0 +++

Most of the trace shows how the runtime environment is created. In particular, you can see
how the library loader hunts for libc.so.6, eventually finding it in /lib. Finally, it gets to
running the main() function of the program, which prints its message and exits.
If you want strace to follow any child processes or threads created by the original process,
add the -f option.

TIP
If you are using strace to trace a program that creates threads, you almost certainly want
to use the -f option. Better still, use -ff and -o <file name> so that the output for each
child process or thread is written to a separate file named <filename>.<PID | TID>.
A common use of strace is to discover which files a program tries to open at startup. You
can restrict the system calls that are traced through the -e option, and you can write the



trace to a file instead of stdout using the -o option:
# strace -e open -o ssh-strace.txt ssh localhost

This shows the libraries and configuration files ssh opens when it is setting up 
a connection.
You can even use strace as a basic profile tool. If you use the -c option, it accumulates the
time spent in system calls and prints out a summary like this:

# strace -c grep linux /usr/lib/* > /dev/null

% time     seconds  usecs/call     calls    errors syscall

------ ----------- ----------- --------- --------- ----------

78.68    0.012825         1       11098      18    read

11.03    0.001798         1        3551            write

10.02    0.001634         8         216      15    open

  0.26    0.000043         0         202            fstat64

  0.00    0.000000         0         201            close

  0.00    0.000000         0          1             execve

  0.00    0.000000         0          1       1     access

  0.00    0.000000         0          3             brk

  0.00    0.000000         0         199            munmap

  0.00    0.000000         0          1             uname

  0.00    0.000000         0          5             mprotect

  0.00    0.000000         0         207            mmap2

  0.00    0.000000         0         15       15    stat64

  0.00    0.000000         0          1             getuid32

  0.00    0.000000         0          1             set_tls

------ ----------- ----------- --------- --------- -----------

100.00    0.016300                 15702      49 total

strace is extremely versatile. We have only scratched the surface of what the tool can do. I
recommend downloading Spying on your programs with strace, a free zine by Julia Evans
available at https://wizardzines.com/zines/strace/.

Summary
Nobody can complain that Linux lacks options for profiling and tracing. This chapter has
given you an overview of some of the most common ones.
When faced with a system that is not performing as well as you would like, start with top
and try to identify the problem. If it proves to be a single application, then you can use perf
record/report to profile it, bearing in mind that you will have to configure the kernel to
enable perf and you will need debug symbols for the binaries and kernel. If the problem is
not so well localized, use perf or BCC tools to get a system-wide view.
Ftrace comes into its own when you have specific questions about the behavior of the
kernel. The function and function_graph tracers provide a detailed view of the
relationship and sequence of function calls. The event tracers allow you to extract more

https://wizardzines.com/zines/strace/


information about functions, including the parameters and return values. LTTng performs a
similar role, making use of the event trace mechanism, and adds high-speed ring buffers to
extract large quantities of data from the kernel. Valgrind has the advantage of running code
in a sandbox and can report on errors that are hard to track down in other ways. Using the
Callgrind tool, it can generate call graphs and report on processor cache usage, and with
Helgrind, it can report on thread-related problems.
Finally, don't forget strace. It is a good standby for finding out which system calls a
program is making, from tracking file open calls to finding file pathnames and checking for
system wake-ups and incoming signals.
All the while, be aware of, and try to avoid, the observer effect; make sure that the
measurements you are making are valid for a production system. In the next chapter, I 
will continue with this theme as we delve into the latency tracers that help us quantify the
real-time performance of a target system.

Further reading
I highly recommend Systems Performance: Enterprise and the Cloud, Second Edition, and
BPF Performance Tools: Linux System and Application Observability, both by Brendan
Gregg.



Chapter 21: Real-Time Programming
Much of the interaction between a computer system and the real world happens in real time,
and so this is an important topic for developers of embedded systems. I have touched on
real-time programming in several places so far: in Chapter 17, Learning About Processes
and Threads, we looked at scheduling policies and priority inversion, and in Chapter 18,
Managing Memory, I described the problems with page faults and the need for memory
locking. Now it is time to bring these topics together and look at real-time programming in
some depth.
In this chapter, I will begin with a discussion about the characteristics of real-time systems,
and then consider the implications for system design, at both the application and kernel
levels. I will describe the real-time PREEMPT_RT kernel patch, and show how to get it and
apply it to a mainline kernel. The final sections will describe how to characterize system
latencies using two tools: cyclictest and Ftrace.
There are other ways to achieve real-time behavior on an embedded Linux device, for
instance, using a dedicated microcontroller or a separate real-time kernel alongside the
Linux kernel in the way that Xenomai and RTAI do. I am not going to discuss these here
because the focus of this book is on using Linux as the core for embedded systems.
In this chapter, we will cover the following topics:

What is real time?
Identifying sources of non-determinism
Understanding scheduling latency
Kernel preemption
The real-time Linux kernel (PREEMPT_RT)
Preemptible kernel locks
High-resolution timers
Avoiding page faults
Interrupt shielding
Measuring scheduling latencies

Technical requirements
To follow along with the examples, make sure you have the following:

A Linux-based host system with a minimum of 60 GB of available disk space
Buildroot 2020.02.9 LTS release
Yocto 3.1 (Dunfell) LTS release



Etcher for Linux
A microSD card reader and card
BeagleBone Black
A 5 V 1 A DC power supply
An Ethernet cable and port for network connectivity

You should have already installed the 2020.02.9 LTS release of Buildroot for Chapter 6,
Selecting a Build System. If you have not, then refer to the System requirements section of 
The Buildroot user manual (https://buildroot.org/downloads/manual/manual.html) before
installing Buildroot on your Linux host according to the instructions from Chapter 6.
You should have already installed the 3.1 (Dunfell) LTS release of Yocto for Chapter 6,
Selecting a Build System. If you have not, then refer to the Compatible Linux Distribution
and Build Host Packages sections of the Yocto Project Quick Build guide
(https://www.yoctoproject.org/docs/current/briefyoctoprojectqs/brief-yoctoprojectqs.html)
before installing Yocto on your Linux host according to the instructions from Chapter 6.

What is real time?
The nature of real-time programming is one of the subjects that software engineers love to
discuss at length, often giving a range of contradictory definitions. I will begin by setting
out what I think is important about real time.
A task is a real-time task if it has to complete before a certain point in time, known as the
deadline. The distinction between real-time and non-real-time tasks is shown by
considering what happens when you play an audio stream on your computer while
compiling the Linux kernel. The first is a real-time task because there is a constant stream
of data arriving at the audio driver, and blocks of audio samples have to be written to the
audio interface at the playback rate. Meanwhile, the compilation is not real-time because
there is no deadline. You simply want it to complete as soon as possible; whether it takes 10
seconds or 10 minutes does not affect the quality of the kernel binaries.
The other important thing to consider is the consequence of missing the deadline, which can
range from mild annoyance through to system failure or, in the most extreme cases, injury
or death. Here are some examples:

Playing an audio stream: There is a deadline in the order of tens of milliseconds. 
If the audio buffer underruns, you will hear a click, which is annoying but you will get
over it.
Moving and clicking a mouse: The deadline is also in the order of tens of
milliseconds. If it is missed, the mouse moves erratically and button clicks will be lost.
If the problem persists, the system will become unusable.
Printing a piece of paper: The deadlines for the paper feed are in the millisecond
range, which if missed may cause the printer to jam, and somebody will have to go and
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fix it. Occasional jams are acceptable, but nobody is going to buy a printer that keeps
on jamming.
Printing sell-by dates on bottles on a production line: If one bottle is not printed,
the whole production line has to be halted, the bottle removed, and the line restarted,
which is expensive.
Baking a cake: There is a deadline of 30 minutes or so. If you miss it by a few
minutes, the cake might be ruined. If you miss it by a lot, the house may burn down.
A power-surge detection system: If the system detects a surge, a circuit breaker has
to be triggered within 2 milliseconds. Failing to do so causes damage to the equipment
and may injure or kill someone.

In other words, there are many consequences to missed deadlines. We often talk about these
different categories:

Soft real-time: The deadline is desirable but is sometimes missed without the system
being considered a failure. The first two examples in the previous list are examples of
this.
Hard real-time: Here, missing a deadline has a serious effect. We can further
subdivide hard real-time into mission-critical systems, in which there is a cost to
missing the deadline, such as the fourth example, and safety-critical systems, in which
there is a danger to life and limb, such as the last two examples. I put in the baking
example to show that not all hard real-time systems have deadlines measured in
milliseconds or microseconds.

Software written for safety-critical systems has to conform to various standards that seek to
ensure that it is capable of performing reliably. It is very difficult for a complex operating
system such as Linux to meet those requirements.
When it comes to mission-critical systems, it is possible, and common, for Linux to be used
for a wide range of control systems. The requirements of the software depend on the
combination of the deadline and the confidence level, which can usually be determined
through extensive testing.
Therefore, to say that a system is real-time, you have to measure its response times under
the maximum anticipated load and show that it meets the deadline for an agreed proportion
of the time. As a rule of thumb, a well-configured Linux system using a mainline kernel is
good for soft real-time tasks with deadlines down to tens of milliseconds, and a kernel with
the PREEMPT_RT patch is good for soft and hard real-time mission-critical systems with
deadlines down to several hundreds of microseconds.
The key to creating a real-time system is to reduce the variability in response times so that
you have greater confidence that the deadlines will not be missed; in other words, you need
to make the system more deterministic. Often, this is done at the expense of performance.
For example, caches make systems run faster by making the average time to access an item
of data shorter, but the maximum time is longer in the case of a cache miss. Caches make a
system faster but less deterministic, which is the opposite of what we want.



TIP
It is a myth of real-time computing that it is fast. This is not so; the more deterministic a
system is, the lower the maximum throughput.
The remainder of this chapter is concerned with identifying the causes of latency and the
things you can do to reduce it.

Identifying sources of non-determinism
Fundamentally, real-time programming is about making sure that the threads controlling the
output in real time are scheduled when needed and so can complete the job before the
deadline. Anything that prevents this is a problem. Here are some problem areas:

Scheduling: Real-time threads must be scheduled before others, and so they must have
a real-time policy, SCHED_FIFO or SCHED_RR. Additionally, they should have priorities
assigned in descending order, starting with the one with the shortest deadline,
according to the theory of rate monotonic analysis that I described in Chapter 17,
Learning About Processes and Threads.
Scheduling latency: The kernel must be able to reschedule as soon as an event such as
an interrupt or timer occurs, and not be subject to unbounded delays. Reducing
scheduling latency is a key topic later on in this chapter.
Priority inversion: This is a consequence of priority-based scheduling, which leads to
unbounded delays when a high-priority thread is blocked on a mutex held by a low-
priority thread, as I described in Chapter 17, Learning About Processes and Threads.
User space has priority inheritance and priority ceiling mutexes; in kernel space, we
have RT-mutexes, which implement priority inheritance, and I will talk about them in
the section on the real-time kernel.
Accurate timers: If you want to manage deadlines in the region of low milliseconds
or microseconds, you need timers that match. High-resolution timers are crucial and
are a configuration option on almost all kernels.
Page faults: A page fault while executing a critical section of code will upset all
timing estimates. You can avoid them by locking memory, as I shall describe later on.
Interrupts: They occur at unpredictable times and can result in an unexpected
processing overhead if there is a sudden flood of them. There are two ways to avoid
this. One is to run interrupts as kernel threads, and the other, on multi-core devices, is
to shield one or more CPUs from interrupt handling. I will discuss both possibilities
later.
Processor caches: These provide a buffer between the CPU and the main memory
and, like all caches, are a source of non-determinism, especially on multi-core devices.
Unfortunately, this is beyond the scope of this book, but you may want to refer to the
references at the end of the chapter for more details.



Memory bus contention: When peripherals access memory directly through a DMA
channel, they use up a slice of memory bus bandwidth, which slows down access from
the CPU core (or cores) and so contributes to non-deterministic execution of the
program. However, this is a hardware issue and is also beyond the scope of this book.

I will expand on the most important problems and see what can be done about them in the
next sections.

Understanding scheduling latency
Real-time threads need to be scheduled as soon as they have something to do. However,
even if there are no other threads of the same or higher priority, there is always a delay from
the point at which the wake-up event occurs—an interrupt or system timer—to the time that
the thread starts to run. This is called scheduling latency. It can be broken down into
several components, as shown in the following diagram:

Figure 21.1 – Scheduling latency

Firstly, there is the hardware interrupt latency from the point at which an interrupt is
asserted until the interrupt service routine (ISR) begins to run. A small part of this is the
delay in the interrupt hardware itself, but the biggest problem is due to interrupts being
disabled in software. Minimizing this IRQ off time is important.
The next is interrupt latency, which is the length of time until the ISR has serviced the
interrupt and woken up any threads waiting on this event. It is mostly dependent on the way
the ISR was written. Normally, it should take only a short time, measured in microseconds.
The final delay is the preemption latency, which is the time from the point that the kernel is
notified that a thread is ready to run to that at which the scheduler actually runs the thread.
It is determined by whether the kernel can be preempted or not. If it is running code in a
critical section, then the rescheduling will have to wait. The length of the delay is
dependent on the configuration of kernel preemption.



Kernel preemption
Preemption latency occurs because it is not always safe or desirable to preempt the current
thread of execution and call the scheduler. Mainline Linux has three settings for
preemption, selected via the Kernel Features | Preemption Model menu:

CONFIG_PREEMPT_NONE: No preemption.
CONFIG_PREEMPT_VOLUNTARY: This enables additional checks for requests 
for preemption.
CONFIG_PREEMPT: This allows the kernel to be preempted.

With preemption set to none, kernel code will continue without rescheduling until it either
returns via a syscall back to user space, where preemption is always allowed, or it
encounters a sleeping wait that stops the current thread. Since it reduces the number of
transitions between the kernel and user space and may reduce the total number of context
switches, this option results in the highest throughput at the expense of large preemption
latencies. It is the default for servers and some desktop kernels where throughput is more
important than responsiveness.
The second option enables explicit preemption points, where the scheduler is called if the
need_resched flag is set, which reduces the worst-case preemption latencies at the expense
of slightly lower throughput. Some distributions set this option on desktops.
The third option makes the kernel preemptible, meaning that an interrupt can result in an
immediate reschedule so long as the kernel is not executing in an atomic context, which I
will describe in the following section. This reduces worst-case preemption latencies and,
therefore, overall scheduling latencies to something in the order of a few milliseconds on
typical embedded hardware.
This is often described as a soft real-time option, and most embedded kernels are
configured in this way. Of course, there is a small reduction in overall throughput, but that
is usually less important than having more deterministic scheduling for embedded devices.

The real-time Linux kernel (PREEMPT_RT)
There is a long-standing effort to reduce latencies even further that goes by the name 
of the kernel configuration option for these features, PREEMPT_RT. The project 
was started by Ingo Molnar, Thomas Gleixner, and Steven Rostedt and has had
contributions from many more developers over the years. The kernel patches are at
https://www.kernel.org/pub/linux/kernel/projects/rt, and there is a wiki at
https://wiki.linuxfoundation.org/realtime/start. An FAQ, albeit out of date, can also be
found at https://rt.wiki.kernel.org/index.php/Frequently_Asked_Questions.
Many parts of the project have been incorporated into mainline Linux over the years,
including high-resolution timers, kernel mutexes, and threaded interrupt handlers. However,
the core patches remain outside of the mainline because they are rather intrusive and (some
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claim) only benefit a small percentage of the total Linux user base. Maybe one day the
whole patch set will be merged upstream.
The central plan is to reduce the amount of time the kernel spends running in an atomic
context, which is where it is not safe to call the scheduler and switch to a different thread.
Typical atomic contexts are when the kernel is in the following states:

Running an interrupt or trap handler.
Holding a spin lock or is in an RCU-critical section. Spin locks and RCU are kernel-
locking primitives, the details of which are not relevant here.
Between calls to preempt_disable() and preempt_enable().
Hardware interrupts are disabled (IRQs off).

The changes that are part of PREEMPT_RT fall into two main areas: one is to reduce the
impact of interrupt handlers by turning them into kernel threads, and the other is to make
locks preemptible so that a thread can sleep while holding one. It is obvious that there is a
large overhead in these changes, which makes average-case interrupt handling slower but
much more deterministic, which is what we are striving for.

Threaded interrupt handlers
Not all interrupts are triggers for real-time tasks, but all interrupts steal cycles from real-
time tasks. Threaded interrupt handlers allow a priority to be associated with the interrupt
and for it to be scheduled at an appropriate time, as shown in the following diagram:



Figure 21.2 – In-line versus threaded interrupt handlers

If the interrupt handler code is run as a kernel thread, there is no reason why it cannot be
preempted by a user space thread of higher priority, and so the interrupt handler does not
contribute toward scheduling latency of the user space thread. Threaded interrupt handlers
have been a feature of mainline Linux since 2.6.30. You can request that an individual
interrupt handler be threaded by registering it with request_threaded_irq() in place of
the normal request_irq(). You can make threaded IRQs the default by configuring the
kernel with CONFIG_IRQ_FORCED_THREADING=y, which makes all handlers into threads
unless they have explicitly prevented this by setting the IRQF_NO_THREAD flag. When you
apply the PREEMPT_RT patches, interrupts are, by default, configured as threads in this way.
Here is an example of what you might see:

# ps -Leo pid,tid,class,rtprio,stat,comm,wchan | grep FF

PID TID CLS RTPRIO STAT COMMAND WCHAN

3 3 FF 1 S ksoftirqd/0 smpboot_th

7 7 FF 99 S posixcputmr/0 posix_cpu_

19 19 FF 50 S irq/28-edma irq_thread

20 20 FF 50 S irq/30-edma_err irq_thread

42 42 FF 50 S irq/91-rtc0 irq_thread

43 43 FF 50 S irq/92-rtc0 irq_thread

44 44 FF 50 S irq/80-mmc0 irq_thread

45 45 FF 50 S irq/150-mmc0 irq_thread

47 47 FF 50 S irq/44-mmc1 irq_thread

52 52 FF 50 S irq/86-44e0b000 irq_thread

59 59 FF 50 S irq/52-tilcdc irq_thread

65 65 FF 50 S irq/56-4a100000 irq_thread

66 66 FF 50 S irq/57-4a100000 irq_thread

67 67 FF 50 S irq/58-4a100000 irq_thread

68 68 FF 50 S irq/59-4a100000 irq_thread

76 76 FF 50 S irq/88-OMAP UAR irq_thread

In this case, which is a BeagleBone running linux-yocto-rt, only the gp_timer interrupt
was not threaded. It is normal that the timer interrupt handler is run inline.

IMPORTANT NOTE
The interrupt threads have all been given the default SCHED_FIFO policy and a priority of
50. It doesn't make sense to leave them at the defaults, however; now is your chance to
assign priorities according to the importance of the interrupts compared to real-time user
space threads.
Here is a suggested order of descending thread priorities:

The POSIX timers thread, posixcputmr, should always have the highest priority.
Hardware interrupts associated with the highest-priority real-time thread.
The highest-priority real-time thread.



Hardware interrupts for the progressively lower-priority real-time threads, followed by
the thread itself.
The next highest priority real-time thread.
Hardware interrupts for non-real-time interfaces.
The soft IRQ daemon, ksoftirqd, which on RT kernels is responsible for running
delayed interrupt routines and, prior to Linux 3.6, was responsible for running the
network stack, the block I/O layer, and other things. You may need to experiment with
different priority levels to achieve a balance.

You can change the priorities using the chrt command as part of the boot script, using a
command such as this:

# chrt -f -p 90 `pgrep irq/28-edma`

The pgrep command is part of the procps package.
Now that we've been introduced to the real-time Linux kernel by way of threaded interrupt
handlers, let's dig deeper into its implementation.

Preemptible kernel locks
Making the majority of kernel locks preemptible is the most intrusive change that
PREEMPT_RT makes, and this code remains outside of the mainline kernel.
The problem occurs with spin locks, which are used for much of the kernel locking. A spin
lock is a busy-wait mutex that does not require a context switch in the contended case, and
so it is very efficient as long as the lock is held for a short time. Ideally, they should be
locked for less than the time it would take to reschedule twice. The following diagram
shows threads running on two different CPUs contending the same spin lock. CPU 0 gets it
first, forcing CPU 1 to spin, waiting until it is unlocked:

Figure 21.3 – Spin lock

The thread that holds the spin lock cannot be preempted since doing so may make the new
thread enter the same code and deadlock when it tries to lock the same spin lock.
Consequently, in mainline Linux, locking a spin lock disables kernel preemption, 
creating an atomic context. This means that a low-priority thread that holds a spin lock can



prevent a high-priority thread from being scheduled, a condition otherwise known 
as priority inversion.

IMPORTANT NOTE
The solution adopted by PREEMPT_RT is to replace almost all spin locks with RT-mutexes. A
mutex is slower than a spin lock, but it is fully preemptible. Not only that, but RT-mutexes
implement priority inheritance and so are not susceptible to priority inversion.
We now have an idea of what's in the PREEMPT_RT patches. So, how do we go about getting
them?

Getting the PREEMPT_RT patches
The RT developers do not create patch sets for every kernel version because of the amount
of porting effort involved. On average, they create patches for every other kernel. The most
recent kernels that are supported at the time of writing are as follows:

5.10-rt
5.9-rt
5.6-rt
5.4-rt
5.2-rt
5.0-rt
4.19-rt
4.18-rt
4.16-rt
4.14-rt
4.13-rt
4.11-rt

IMPORTANT NOTE
The patches are available at
https://www.kernel.org/pub/linux/kernel/projects/rt.

If you are using the Yocto Project, there is an rt version of the kernel already. Otherwise, it
is possible that the place you got your kernel from already has the PREEMPT_RT patch
applied. If not, you will have to apply the patch yourself. Firstly, make sure that the
PREEMPT_RT patch version and your kernel version match exactly; otherwise, you will not
be able to apply the patches cleanly. Then, you apply it in the normal way, as shown 
in the following command lines. You will then be able to configure the kernel with
CONFIG_PREEMPT_RT_FULL:

https://www.kernel.org/pub/linux/kernel/projects/rt


$ cd linux-5.4.93

$ zcat patch-5.4.93-rt51.patch.gz | patch -p1

There is a problem in the previous paragraph. The RT patch will only apply if you are using
a compatible mainline kernel. You are probably not, because that is the nature of embedded
Linux kernels. Therefore, you will have to spend some time looking at failed patches and
fixing them, and then analyzing the board support for your target and adding any real-time
support that is missing. These details are, once again, outside the scope of this book. If you
are not sure what to do, you should request support from the kernel vendor that you are
using and on kernel developer forums.

The Yocto Project and PREEMPT_RT
The Yocto Project supplies two standard kernel recipes: linux-yocto and the latter having
the real-time patches already applied. Assuming that your target is supported by the Yocto
kernels, you just need to select linux-yocto-rt as your preferred kernel and declare that
your machine is compatible, for example, by adding lines similar to these to your
conf/local.conf:

PREFERRED_PROVIDER_virtual/kernel = "linux-yocto-rt"

COMPATIBLE_MACHINE_beaglebone = "beaglebone"

So, now that we know where to get a real-time Linux kernel, let's switch gears and talk
about timing.

High-resolution timers
Timer resolution is important if you have precise timing requirements, which is typical for
real-time applications. The default timer in Linux is a clock that runs at a configurable rate,
typically 100 Hz for embedded systems and 250 Hz for servers and desktops. The interval
between two timer ticks is known as a jiffy and, in the examples given previously, is 10
milliseconds on an embedded SoC and 4 milliseconds on a server.
Linux gained more accurate timers from the real-time kernel project in version 2.6.18, and
now they are available on all platforms, provided that there is a high-resolution timer source
and device driver for it—which is almost always the case. You need to configure the kernel
with CONFIG_HIGH_RES_TIMERS=y.
With this enabled, all the kernel and user space clocks will be accurate down to the
granularity of the underlying hardware. Finding the actual clock granularity is difficult. The
obvious answer is the value provided by clock_getres(2), but that always claims a
resolution of 1 nanosecond. The cyclictest tool that I will describe later has an option to
analyze the times reported by the clock to guess the resolution:

# cyclictest -R

# /dev/cpu_dma_latency set to 0us

WARN: reported clock resolution: 1 nsec



WARN: measured clock resolution approximately: 708 nsec

You can also look at the kernel log messages for strings like this:
# dmesg | grep clock

OMAP clockevent source: timer2 at 24000000 Hz

sched_clock: 32 bits at 24MHz, resolution 41ns, wraps every
178956969942ns

OMAP clocksource: timer1 at 24000000 Hz

Switched to clocksource timer1

The two methods provide rather different numbers, for which I have no good explanation,
but since both are below 1 microsecond, I am happy.
High-resolution timers can measure variations in latency with sufficient accuracy. Now, let's
look at a couple of ways to mitigate such non-determinism.

Avoiding page faults
A page fault occurs when an application reads or writes to memory that is not committed to
physical memory. It is impossible (or very hard) to predict when a page fault will happen,
so they are another source of non-determinism in computers.
Fortunately, there is a function that allows you to commit all the memory used by the
process and lock it down so that it cannot cause a page fault. It is mlockall(2). These are
its two flags:

MCL_CURRENT: This locks all pages currently mapped.
MCL_FUTURE: This locks pages that are mapped in later.

You usually call mlockall during the startup of the application with both flags set to lock
all current and future memory mappings.

TIP
MCL_FUTURE is not magic, in that there will still be a non-deterministic delay when
allocating or freeing heap memory using malloc()/free() 
or mmap(). Such operations are best done at startup and not in the main control loops.
Memory allocated on the stack is trickier because it is done automatically, and if you call a
function that makes the stack deeper than before, you will encounter more memory-
management delays. A simple fix is to grow the stack to a size larger than you think you
will ever need at startup. The code would look like this:

#define MAX_STACK (512*1024)

static void stack_grow (void)

{

      char dummy[MAX_STACK];

      memset(dummy, 0, MAX_STACK);

      return;

}



int main(int argc, char* argv[])

{

      […]

      stack_grow ();

      mlockall(MCL_CURRENT | MCL_FUTURE);

      […]

The stack_grow() function allocates a large variable on the stack and then zeroes it out to
force those pages of memory to be committed to this process.
Interrupts are another source of non-determinism we should guard against.

Interrupt shielding
Using threaded interrupt handlers helps mitigate interrupt overhead by running some
threads at a higher priority than interrupt handlers that do not impact real-time tasks. If you
are using a multi-core processor, you can take a different approach and shield one or more
cores from processing interrupts completely, allowing them to be dedicated to real-time
tasks instead. This works either with a normal Linux kernel or a PREEMPT_RT kernel.
Achieving this is a question of pinning the real-time threads to one CPU and the interrupt
handlers to a different one. You can set the CPU affinity of a thread or process using the
taskset command-line tool, or you can use the sched_setaffinity(2) and
pthread_setaffinity_np(3) functions.
To set the affinity of an interrupt, first note that there is a subdirectory for each interrupt
number in /proc/irq/<IRQ number>. The control files for the interrupt are in there,
including a CPU mask in smp_affinity. Write a bitmask to that file with a bit set for each
CPU that is allowed to handle that IRQ.
Stack growing and interrupt shielding are nifty techniques for improving responsiveness,
but how can you tell whether they are actually working?

Measuring scheduling latencies
All the configuration and tuning you may do will be pointless if you cannot show that your
device meets the deadlines. You will need your own benchmarks for the final testing, but I
will describe here two important measurement tools: cyclictest and Ftrace.

cyclictest
cyclictest was originally written by Thomas Gleixner and is now available on most
platforms in a package named rt-tests. If you are using the Yocto Project, you can create
a target image that includes rt-tests by building the real-time image recipe like this:

$ bitbake core-image-rt



If you are using Buildroot, you need to add the BR2_PACKAGE_RT_TESTS package in the
Target packages | Debugging, profiling and benchmark | rt-tests menu.
cyclictest measures scheduling latencies by comparing the actual time taken for sleeping
to the requested time. If there was no latency, they would be the same, and the reported
latency would be 0. cyclictest assumes a timer resolution of less than 1 microsecond.
It has a large number of command-line options. To start with, you might try running this
command as root on the target:

# cyclictest -l 100000 -m -n -p 99

# /dev/cpu_dma_latency set to 0us

policy: fifo: loadavg: 1.14 1.06 1.00 1/49 320

T: 0 ( 320) P:99 I:1000 C: 100000 Min: 9 Act: 13 Avg: 15 Max: 134

The options selected are as follows:
-l N: This loops N times (the default is unlimited).
-m: This locks memory with mlockall.
-n: This uses clock_nanosleep(2) instead of nanosleep(2).
-p N: This uses the real-time priority N.

The result line shows the following, reading from left to right:
T: 0: This was thread 0, the only thread in this run. You can set the number of threads
with parameter -t.
(320): This was PID 320.
P:99: The priority was 99.
I:1000: The interval between loops was 1,000 microseconds. You can set the interval
with the -i N parameter.
C:100000: The final loop count for this thread was 100,000.
Min: 9: The minimum latency was 9 microseconds.
Act:13: The actual latency was 13 microseconds. The actual latency is the most recent
latency measurement, which only makes sense if you are watching cyclictest as it
runs.
Avg:15: The average latency was 15 microseconds.
Max:134: The maximum latency was 134 microseconds.

This was obtained on an idle system running an unmodified linux-yocto kernel as a quick
demonstration of the tool. To be of real use, you would run tests over a 24-hour period or
longer while running a load representative of the maximum you expect.
Of the numbers produced by cyclictest, the maximum latency is the most interesting, but
it would be nice to get an idea of the spread of the values. You can get that by adding -h
<N> to obtain a histogram of samples that are up to N microseconds late. Using this
technique, I obtained three traces for the same target board running kernels with no



preemption, with standard preemption, and with RT preemption while being loaded with
Ethernet traffic from a flood ping. The command line was as shown here:

# cyclictest -p 99 -m -n -l 100000 -q -h 500 > cyclictest.data

Then, I used gnuplot to create the three graphs that follow. If you are curious, the 
data files and the gnuplot command script are in the code archive, in
MELP/Chapter21/plot.
The following is the output generated with no preemption:

Figure 21.4 – No preemption

Without preemption, most samples are within 100 microseconds of the deadline, but there
are some outliers of up to 500 microseconds, which is pretty much what you would expect.
This is the output generated with standard preemption:



Figure 21.5 – Standard preemption

With preemption, the samples are spread out at the lower end, but there is nothing beyond
120 microseconds.
Here is the output generated with RT preemption:



Figure 21.6 – RT preemption

The RT kernel is a clear winner because everything is tightly bunched around the 20-
microsecond mark, and there is nothing later than 35 microseconds.
cyclictest, then, is a standard metric for scheduling latencies. However, it cannot help
you identify and resolve specific problems with kernel latency. To do that, you need Ftrace.

Using Ftrace
The kernel function tracer has tracers to help track down kernel latencies—that is what it
was originally written for, after all. These tracers capture the trace for the worst-case



latency detected during a run, showing the functions that caused the delay.
The tracers of interest, together with the kernel configuration parameters, are as follows:

irqsoff: CONFIG_IRQSOFF_TRACER traces code that disables interrupts, recording the
worst case.
preemptoff: CONFIG_PREEMPT_TRACER is similar to irqsoff, but traces the longest
time that kernel preemption is disabled (only available on preemptible kernels).
preemptirqsoff: Combines the previous two traces to record the longest time either
irqs and/or preemption are disabled for.
wakeup: Traces and records the maximum latency that it takes for the highest-priority
task to get scheduled after it has been woken up.
wakeup_rt: This is the same as wakeup but only for real-time threads with the
SCHED_FIFO, SCHED_RR, or SCHED_DEADLINE policies.
wakeup_dl: This is the same but only for deadline-scheduled threads with the
SCHED_DEADLINE policy.

Be aware that running Ftrace adds a lot of latency, in the order of tens of milliseconds,
every time it captures a new maximum, which Ftrace itself can ignore. However, it skews
the results of user space tracers such as cyclictest. In other words, ignore the results of
cyclictest if you run it while capturing traces.
Selecting the tracer is the same as for the function tracer we looked at in Chapter 20,
Profiling and Tracing. Here is an example of capturing a trace for the maximum period
with preemption disabled for a period of 60 seconds:

# echo preemptoff > /sys/kernel/debug/tracing/current_tracer

# echo 0 > /sys/kernel/debug/tracing/tracing_max_latency

# echo 1 > /sys/kernel/debug/tracing/tracing_on

# sleep 60

# echo 0 > /sys/kernel/debug/tracing/tracing_on

The resulting trace, heavily edited, looks like this:
# cat /sys/kernel/debug/tracing/trace

# tracer: preemptoff

#

# preemptoff latency trace v1.1.5 on 3.14.19-yocto-standard

# ------------------------------------------------------------

# latency: 1160 us, #384/384, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0)

# -----------------

# | task: init-1 (uid:0 nice:0 policy:0 rt_prio:0)

# -----------------

# => started at: ip_finish_output

# => ended at: __local_bh_enable_ip

#

#



#     _------=> CPU#

#     / _-----=> irqs-off

#     | / _----=> need-resched

#     || / _---=> hardirq/softirq

#     ||| / _--=> preempt-depth

#     |||| / delay

# cmd pid ||||| time | caller

# \ / ||||| \ | /

init-1 0..s. 1us+: ip_finish_output

init-1 0d.s2 27us+: preempt_count_add <-cpdma_chan_submit

init-1 0d.s3 30us+: preempt_count_add <-cpdma_chan_submit

init-1 0d.s4 37us+: preempt_count_sub <-cpdma_chan_submit

[…]

init-1 0d.s2 1152us+: preempt_count_sub <-__local_bh_enable

init-1 0d..2 1155us+: preempt_count_sub <-__local_bh_enable_ip

init-1 0d..1 1158us+: __local_bh_enable_ip

init-1 0d..1 1162us!: trace_preempt_on <-__local_bh_enable_ip

init-1 0d..1 1340us : <stack trace>

Here, you can see that the longest period with kernel preemption disabled while running the
trace was 1160 microseconds. This simple fact is available by reading
/sys/kernel/debug/tracing/tracing_max_latency, but the previous trace goes further
and gives you the sequence of kernel function calls that led up to that measurement. The
column marked delay shows the point on the trail where each function was called, ending
with the call to trace_preempt_on() at 1162us, at which point kernel preemption is once
again enabled. With this information, you can look back through the call chain and
(hopefully) work out whether this is a problem or not.
The other tracers mentioned work in the same way.

Combining cyclictest and Ftrace
If cyclictest reports unexpectedly long latencies, you can use the breaktrace option to
abort the program and trigger Ftrace to obtain more information.
You invoke breaktrace using -b<N> or --breaktrace=<N>, where N is the number of
microseconds of latency that will trigger the trace. You select the Ftrace tracer using -
T[tracer name] or one of the following:

-C: Context switch
-E: Event
-f: Function
-w: Wakeup
-W: Wakeup-RT



For example, this will trigger the Ftrace function tracer when a latency greater than 100
microseconds is measured:

# cyclictest -a -t -n -p99 -f -b100

We now have two complementary tools for debugging latency issues. cyclictest detects
the pauses and Ftrace provides the details.

Summary
The term real-time is meaningless unless you qualify it with a deadline and an acceptable
miss rate. When you have these two pieces of information, you can determine whether or
not Linux is a suitable candidate for the operating system and, if so, begin to tune your
system to meet the requirements. Tuning Linux and your application to handle real-time
events means making it more deterministic so that the real-time threads can meet their
deadlines reliably. Determinism usually comes at the price of total throughput, so a real-
time system is not going to be able to process as much data as a non-real-time system.
It is not possible to provide mathematical proof that a complex operating system such as
Linux will always meet a given deadline, so the only approach is through extensive testing
using tools such as cyclictest and Ftrace and, more importantly, using your own
benchmarks for your own application.
To improve determinism, you need to consider both the application and the kernel. When
writing real-time applications, you should follow the guidelines given in this chapter about
scheduling, locking, and memory.
The kernel has a large impact on the determinism of your system. Thankfully, there has
been a lot of work on this over the years. Enabling kernel preemption is a good first step. If
you still find that it is missing deadlines more often than you would like, then you might
want to consider the PREEMPT_RT kernel patches. They can certainly produce low latencies,
but the fact that they are not in the mainline yet means that you may have problems
integrating them with the vendor kernel for your particular board. You may instead, or in
addition, need to embark on the exercise of finding the cause of the latencies using Ftrace
and similar tools.
That brings me to the end of this dissection of embedded Linux. Being an engineer of
embedded systems requires a very wide range of skills, which includes a low-level
knowledge of hardware and how the kernel interacts with it. You need to be an excellent
system engineer who is able to configure user applications and tune them to work in an
efficient manner. All of this has to be done with hardware that is, often, only just capable of
carrying out the task. There is a quotation that sums this up: An engineer can do for a dollar
what anyone else can do for two. I hope that you will be able to achieve this with the
information I have presented during the course of this book.

Further reading



The following resources have further information about the topics introduced in 
this chapter:

Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and
Applications by Giorgio Buttazzo
Multicore Application Programming by Darryl Gove



Packt.com
Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
 

Spend less time learning and more time coding with practical eBooks and Videos from
over 4,000 industry professionals
Improve your learning with Skill Plans built especially for you
Get a free eBook or video every month
Fully searchable for easy access to vital information
Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.
At www.packt.com, you can also read a collection of free technical articles, sign up 
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

http://packt.com/
http://packt.com/
mailto:customercare@packtpub.com
http://www.packt.com/


Linux Device Drivers Development
John Madieu
ISBN: 978-1-78528-000-9

Use kernel facilities to develop powerful drivers
Develop drivers for widely used I2C and SPI devices and use the regmap API
Write and support devicetree from within your drivers
Program advanced drivers for network and frame buffer devices
Delve into the Linux irqdomain API and write interrupt controller drivers
Enhance your skills with regulator and PWM frameworks
Develop measurement system drivers with IIO framework
Get the best from memory management and the DMA subsystem
Access and manage GPIO subsystems and develop GPIO controller drivers



Hands-On RTOS with Microcontrollers
Brian Amos
ISBN: 978-1-83882-673-4

Understand when to use an RTOS for a project
Explore RTOS concepts such as tasks, mutexes, semaphores, and queues
Discover different microcontroller units (MCUs) and choose the best one for 
your project
Evaluate and select the best IDE and middleware stack for your project
Use professional-grade tools for analyzing and debugging your application
Get FreeRTOS-based applications up and running on an STM32 board

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like
you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Leave a review - let other readers know what you
think

http://authors.packtpub.com/


Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!



Table of Contents
Mastering Embedded Linux Programming Third Edition
Contributors
About the authors
About the reviewers
Preface

Who this book is for
What this book covers
To get the most out of this book
Download the example code files
Download the color images
Conventions used
Get in touch
Reviews

Section 1: Elements of Embedded Linux
Chapter 1: Starting Out

Choosing Linux
When not to choose Linux
Meeting the players
Moving through the project life cycle

The four elements of embedded Linux
Navigating open source

Licenses
Selecting hardware for embedded Linux
Obtaining the hardware for this book

The Raspberry Pi 4
The BeagleBone Black
QEMU

Provisioning your development environment
Summary

Chapter 2: Learning about Toolchains
Technical requirements
Introducing toolchains

Types of toolchains
CPU architectures
Choosing the C library

Finding a toolchain
Building a toolchain using crosstool-NG

Installing crosstool-NG
Building a toolchain for BeagleBone Black
Building a toolchain for QEMU

Anatomy of a toolchain
Finding out about your cross compiler



The sysroot, library, and header files
Other tools in the toolchain
Looking at the components of the C library

Linking with libraries – static and dynamic linking
Static libraries
Shared libraries

The art of cross-compiling
Simple makefiles
Autotools
Package configuration
Problems with cross-compiling
CMake

Summary
Further reading

Chapter 3: All about Bootloaders
Technical requirements
What does a bootloader do?
The boot sequence

Phase 1 – ROM code
Phase 2 – secondary program loader
Phase 3 – TPL

Moving from the bootloader to a kernel
Introducing device trees

Device tree basics
The reg property
Labels and interrupts
Device tree include files
Compiling a device tree

U-Boot
Building U-Boot
Installing U-Boot
Using U-Boot
Booting Linux
Porting U-Boot to a new board
Building and testing
Falcon mode

Summary
Chapter 4: Configuring and Building the Kernel

Technical requirements
What does the kernel do?
Choosing a kernel

Kernel development cycle
Stable and long-term support releases

Building the kernel
Getting the source



Understanding kernel configuration – Kconfig
Using LOCALVERSION to identify your kernel
When to use kernel modules

Compiling – Kbuild
Finding out which kernel target to build
Build artifacts
Compiling device trees
Compiling modules
Cleaning kernel sources
Building a 64-bit kernel for the Raspberry Pi 4
Building a kernel for the BeagleBone Black
Building a kernel for QEMU

Booting the kernel
Booting the Raspberry Pi 4
Booting the BeagleBone Black
Booting QEMU
Kernel panic
Early user space
Kernel messages
The kernel command line

Porting Linux to a new board
A new device tree
Setting the board's compatible property

Summary
Additional reading

Chapter 5: Building a Root Filesystem
Technical requirements
What should be in the root filesystem?

The directory layout
The staging directory
POSIX file access permissions
File ownership permissions in the staging directory
Programs for the root filesystem
Libraries for the root filesystem
Device nodes
The proc and sysfs filesystems
Kernel modules

Transferring the root filesystem to the target
Creating a boot initramfs

Standalone initramfs
Booting the initramfs
Booting with QEMU
Booting the BeagleBone Black
Building an initramfs into the kernel image
Building an initramfs using a device table



The old initrd format
The init program

Starting a daemon process
Configuring user accounts

Adding user accounts to the root filesystem
A better way of managing device nodes

An example using devtmpfs
An example using mdev
Are static device nodes so bad after all?

Configuring the network
Network components for glibc

Creating filesystem images with device tables
Booting the BeagleBone Black

Mounting the root filesystem using NFS
Testing with QEMU
Testing with the BeagleBone Black
Problems with file permissions

Using TFTP to load the kernel
Summary
Further reading

Chapter 6: Selecting a Build System
Technical requirements
Comparing build systems
Distributing binaries
Introducing Buildroot

Background
Stable releases and long-term support
Installing
Configuring
Running
Targeting real hardware
Creating a custom BSP
Adding your own code
License compliance

Introducing the Yocto Project
Background
Stable releases and supports
Installing the Yocto Project
Configuring
Building
Running the QEMU target
Layers
Customizing images via local.conf
Writing an image recipe
Creating an SDK



The license audit
Summary
Further reading

Chapter 7: Developing with Yocto
Technical requirements
Building on top of an existing BSP

Building an existing BSP
Controlling Wi-Fi
Controlling Bluetooth
Adding a custom layer

Capturing changes with devtool
Development workflows
Creating a new recipe
Modifying the source built by a recipe
Upgrading a recipe to a newer version

Building your own distro
When and when not to
Creating a new distro layer
Configuring your distro
Adding more recipes to your distro
Runtime package management

Provisioning a remote package server
Summary
Further reading

Chapter 8: Yocto Under the Hood
Technical requirements
Decomposing Yocto's architecture and workflow

Metadata
Build tasks
Image generation

Separating metadata into layers
Troubleshooting build failures

Isolating errors
Dumping the environment
Reading the task log
Adding more logging
Running commands from devshell
Graphing dependencies

Understanding BitBake syntax and semantics
Tasks
Dependencies
Variables
Functions
RDEPENDS revisited

Summary



Further reading
Section 2: System Architecture and Design Decisions
Chapter 9: Creating a Storage Strategy

Technical requirements
Storage options

NOR flash
NAND flash

Accessing flash memory from the bootloader
U-Boot and NOR flash
U-Boot and NAND flash
U-Boot and MMC, SD, and eMMC

Accessing flash memory from Linux
Memory technology devices
The MMC block driver

Filesystems for flash memory
Flash translation layers

Filesystems for NOR and NAND flash memory
JFFS2
YAFFS2
UBI and UBIFS

Filesystems for managed flash
Flashbench
Discard and TRIM
Ext4
F2FS
FAT16/32

Read-only compressed filesystems
SquashFS

Temporary filesystems
Making the root filesystem read-only
Filesystem choices
Summary
Further reading

Chapter 10: Updating Software in the Field
Technical requirements
From where do updates originate?
What to update

Bootloader
Kernel
Root filesystem
System applications
Device-specific data
Components that need to be updated

The basics of software updates
Making updates robust



Making updates fail-safe
Making updates secure

Types of update mechanism
Symmetric image update
Asymmetric image update
Atomic file updates

OTA updates
Using Mender for local updates

Building the Mender client
Installing an update
Using Mender for OTA updates
Using balena for local updates

Creating an account
Creating an application
Adding a device
Installing the CLI
Pushing a project

Summary
Chapter 11: Interfacing with Device Drivers

Technical requirements
The role of device drivers
Character devices
Block devices
Network devices
Finding out about drivers at runtime

Getting information from sysfs
Finding the right device driver
Device drivers in user space

GPIO
LEDs
I2C
SPI

Writing a kernel device driver
Designing a character driver interface
The anatomy of a device driver
Compiling kernel modules
Loading kernel modules

Discovering the hardware configuration
Device trees
The platform data
Linking hardware with device drivers

Summary
Further reading

Chapter 12: Prototyping with Breakout Boards
Technical requirements



Mapping schematics to the device tree's source
Reading schematics and data sheets
Installing Debian on the BeagleBone Black
Enabling spidev
Customizing the device tree

Prototyping with breakout boards
Closing the SPI jumper
Attaching the GNSS antenna
Attaching the SPI header
Connecting the SPI jumper wires

Probing SPI signals with a logic analyzer
Receiving NMEA messages over SPI
Summary
Further reading

Chapter 13: Starting Up – The init Program
Technical requirements
After the kernel has booted
Introducing the init programs
BusyBox init

Buildroot init scripts
System V init

inittab
The init.d scripts
Adding a new daemon
Starting and stopping services

systemd
Building systemd with the Yocto Project and Buildroot
Introducing targets, services, and units
How systemd boots the system
Adding your own service
Adding a watchdog
Implications for embedded Linux

Summary
Further reading

Chapter 14: Starting with BusyBox runit
Technical requirements
Getting BusyBox runit
Creating service directories and files

Service directory layout
Service configuration

Service supervision
Controlling services

Depending on other services
Start dependencies
Custom start dependencies



Putting it all together
Dedicated service logging

How does it work?
Adding dedicated logging to a service
Log rotation

Signaling a service
Summary
Further reading

Chapter 15: Managing Power
Technical requirements
Measuring power usage
Scaling the clock frequency

The CPUFreq driver
Using CPUFreq

Selecting the best idle state
The CPUIdle driver
Tickless operation

Powering down peripherals
Putting the system to sleep

Power states
Wakeup events
Timed wakeups from the real-time clock

Summary
Further reading

Section 3: Writing Embedded Applications
Chapter 16: Packaging Python

Technical requirements
Getting Docker

Retracing the origins of Python packaging
distutils
setuptools
setup.py

Installing Python packages with pip
requirements.txt

Managing Python virtual environments with venv
Installing precompiled binaries with conda

Environment management
Package management

Deploying Python applications with Docker
The anatomy of a Dockerfile
Building a Docker image
Running a Docker image
Fetching a Docker image
Publishing a Docker image
Cleaning up



Summary
Further reading

Chapter 17: Learning about Processes and Threads
Technical requirements
Process or thread?
Processes

Creating a new process
Terminating a process
Running a different program
Daemons
Inter-process communication

Threads
Creating a new thread
Terminating a thread
Compiling a program with threads
Inter-thread communication
Mutual exclusion
Changing conditions
Partitioning the problem

ZeroMQ
Getting pyzmq
Messaging between processes
Messaging within processes

Scheduling
Fairness versus determinism
Time-shared policies
Real-time policies
Choosing a policy
Choosing a real-time priority

Summary
Further reading

Chapter 18: Managing Memory
Technical requirements
Virtual memory basics
Kernel space memory layout

How much memory does the kernel use?
User space memory layout
The process memory map
Swapping

Swapping to compressed memory (zram)
Mapping memory with mmap

Using mmap to allocate private memory
Using mmap to share memory
Using mmap to access device memory

How much memory does my application use?



Per-process memory usage
Using top and ps
Using smem
Other tools to consider

Identifying memory leaks
mtrace
Valgrind

Running out of memory
Summary
Further reading

Section 4: Debugging and Optimizing Performance
Chapter 19: Debugging with GDB

Technical requirements
The GNU debugger
Preparing to debug
Debugging applications

Remote debugging using gdbserver
Setting up the Yocto Project for remote debugging
Setting up Buildroot for remote debugging
Starting to debug
Native debugging

Just-in-time debugging
Debugging forks and threads
Core files

Using GDB to look at core files
GDB user interfaces

Terminal User Interface
Data Display Debugger
Visual Studio Code

Debugging kernel code
Debugging kernel code with kgdb
A sample debug session
Debugging early code
Debugging modules
Debugging kernel code with kdb
Looking at an Oops
Preserving the Oops

Summary
Further reading

Chapter 20: Profiling and Tracing
Technical requirements
The observer effect

Symbol tables and compile flags
Beginning to profile
Profiling with top



The poor man's profiler
Introducing perf

Configuring the kernel for perf
Building perf with the Yocto Project
Building perf with Buildroot
Profiling with perf
Call graphs
perf annotate

Tracing events
Introducing Ftrace

Preparing to use Ftrace
Using Ftrace
Dynamic Ftrace and trace filters
Trace events

Using LTTng
LTTng and the Yocto Project
LTTng and Buildroot
Using LTTng for kernel tracing

Using BPF
Configuring the kernel for BPF
Building a BCC toolkit with Buildroot
Using BPF tracing tools

Using Valgrind
Callgrind
Helgrind

Using strace
Summary
Further reading

Chapter 21: Real-Time Programming
Technical requirements
What is real time?
Identifying sources of non-determinism
Understanding scheduling latency
Kernel preemption

The real-time Linux kernel (PREEMPT_RT)
Threaded interrupt handlers

Preemptible kernel locks
Getting the PREEMPT_RT patches
The Yocto Project and PREEMPT_RT

High-resolution timers
Avoiding page faults
Interrupt shielding
Measuring scheduling latencies

cyclictest
Using Ftrace



Combining cyclictest and Ftrace
Summary
Further reading
Why subscribe?

Other Books You May Enjoy
Packt is searching for authors like you
Leave a review - let other readers know what you think


	Mastering Embedded Linux Programming Third Edition
	Contributors
	About the authors
	About the reviewers
	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used
	Get in touch
	Reviews

	Section 1: Elements of Embedded Linux
	Chapter 1: Starting Out
	Choosing Linux
	When not to choose Linux
	Meeting the players
	Moving through the project life cycle
	The four elements of embedded Linux

	Navigating open source
	Licenses

	Selecting hardware for embedded Linux
	Obtaining the hardware for this book
	The Raspberry Pi 4
	The BeagleBone Black
	QEMU

	Provisioning your development environment
	Summary

	Chapter 2: Learning about Toolchains
	Technical requirements
	Introducing toolchains
	Types of toolchains
	CPU architectures
	Choosing the C library

	Finding a toolchain
	Building a toolchain using crosstool-NG
	Installing crosstool-NG
	Building a toolchain for BeagleBone Black
	Building a toolchain for QEMU

	Anatomy of a toolchain
	Finding out about your cross compiler
	The sysroot, library, and header files
	Other tools in the toolchain
	Looking at the components of the C library

	Linking with libraries – static and dynamic linking
	Static libraries
	Shared libraries

	The art of cross-compiling
	Simple makefiles
	Autotools
	Package configuration
	Problems with cross-compiling
	CMake

	Summary
	Further reading

	Chapter 3: All about Bootloaders
	Technical requirements
	What does a bootloader do?
	The boot sequence
	Phase 1 – ROM code
	Phase 2 – secondary program loader
	Phase 3 – TPL

	Moving from the bootloader to a kernel
	Introducing device trees
	Device tree basics
	The reg property
	Labels and interrupts
	Device tree include files
	Compiling a device tree

	U-Boot
	Building U-Boot
	Installing U-Boot
	Using U-Boot
	Booting Linux
	Porting U-Boot to a new board
	Building and testing
	Falcon mode

	Summary

	Chapter 4: Configuring and Building the Kernel
	Technical requirements
	What does the kernel do?
	Choosing a kernel
	Kernel development cycle
	Stable and long-term support releases

	Building the kernel
	Getting the source
	Understanding kernel configuration – Kconfig
	Using LOCALVERSION to identify your kernel
	When to use kernel modules

	Compiling – Kbuild
	Finding out which kernel target to build
	Build artifacts
	Compiling device trees
	Compiling modules
	Cleaning kernel sources
	Building a 64-bit kernel for the Raspberry Pi 4
	Building a kernel for the BeagleBone Black
	Building a kernel for QEMU

	Booting the kernel
	Booting the Raspberry Pi 4
	Booting the BeagleBone Black
	Booting QEMU
	Kernel panic
	Early user space
	Kernel messages
	The kernel command line

	Porting Linux to a new board
	A new device tree
	Setting the board's compatible property

	Summary
	Additional reading

	Chapter 5: Building a Root Filesystem
	Technical requirements
	What should be in the root filesystem?
	The directory layout
	The staging directory
	POSIX file access permissions
	File ownership permissions in the staging directory
	Programs for the root filesystem
	Libraries for the root filesystem
	Device nodes
	The proc and sysfs filesystems
	Kernel modules

	Transferring the root filesystem to the target
	Creating a boot initramfs
	Standalone initramfs
	Booting the initramfs
	Booting with QEMU
	Booting the BeagleBone Black
	Building an initramfs into the kernel image
	Building an initramfs using a device table
	The old initrd format

	The init program
	Starting a daemon process

	Configuring user accounts
	Adding user accounts to the root filesystem

	A better way of managing device nodes
	An example using devtmpfs
	An example using mdev
	Are static device nodes so bad after all?

	Configuring the network
	Network components for glibc

	Creating filesystem images with device tables
	Booting the BeagleBone Black

	Mounting the root filesystem using NFS
	Testing with QEMU
	Testing with the BeagleBone Black
	Problems with file permissions

	Using TFTP to load the kernel
	Summary
	Further reading

	Chapter 6: Selecting a Build System
	Technical requirements
	Comparing build systems
	Distributing binaries
	Introducing Buildroot
	Background
	Stable releases and long-term support
	Installing
	Configuring
	Running
	Targeting real hardware
	Creating a custom BSP
	Adding your own code
	License compliance

	Introducing the Yocto Project
	Background
	Stable releases and supports
	Installing the Yocto Project
	Configuring
	Building
	Running the QEMU target
	Layers
	Customizing images via local.conf
	Writing an image recipe
	Creating an SDK
	The license audit

	Summary
	Further reading

	Chapter 7: Developing with Yocto
	Technical requirements
	Building on top of an existing BSP
	Building an existing BSP
	Controlling Wi-Fi
	Controlling Bluetooth
	Adding a custom layer

	Capturing changes with devtool
	Development workflows
	Creating a new recipe
	Modifying the source built by a recipe
	Upgrading a recipe to a newer version

	Building your own distro
	When and when not to
	Creating a new distro layer
	Configuring your distro
	Adding more recipes to your distro
	Runtime package management

	Provisioning a remote package server
	Summary
	Further reading

	Chapter 8: Yocto Under the Hood
	Technical requirements
	Decomposing Yocto's architecture and workflow
	Metadata
	Build tasks
	Image generation

	Separating metadata into layers
	Troubleshooting build failures
	Isolating errors
	Dumping the environment
	Reading the task log
	Adding more logging
	Running commands from devshell
	Graphing dependencies

	Understanding BitBake syntax and semantics
	Tasks
	Dependencies
	Variables
	Functions
	RDEPENDS revisited

	Summary
	Further reading

	Section 2: System Architecture and Design Decisions
	Chapter 9: Creating a Storage Strategy
	Technical requirements
	Storage options
	NOR flash
	NAND flash

	Accessing flash memory from the bootloader
	U-Boot and NOR flash
	U-Boot and NAND flash
	U-Boot and MMC, SD, and eMMC

	Accessing flash memory from Linux
	Memory technology devices
	The MMC block driver

	Filesystems for flash memory
	Flash translation layers

	Filesystems for NOR and NAND flash memory
	JFFS2
	YAFFS2
	UBI and UBIFS

	Filesystems for managed flash
	Flashbench
	Discard and TRIM
	Ext4
	F2FS
	FAT16/32

	Read-only compressed filesystems
	SquashFS

	Temporary filesystems
	Making the root filesystem read-only
	Filesystem choices
	Summary
	Further reading

	Chapter 10: Updating Software in the Field
	Technical requirements
	From where do updates originate?
	What to update
	Bootloader
	Kernel
	Root filesystem
	System applications
	Device-specific data
	Components that need to be updated

	The basics of software updates
	Making updates robust
	Making updates fail-safe
	Making updates secure

	Types of update mechanism
	Symmetric image update
	Asymmetric image update
	Atomic file updates

	OTA updates
	Using Mender for local updates
	Building the Mender client

	Installing an update
	Using Mender for OTA updates
	Using balena for local updates
	Creating an account
	Creating an application
	Adding a device
	Installing the CLI
	Pushing a project

	Summary

	Chapter 11: Interfacing with Device Drivers
	Technical requirements
	The role of device drivers
	Character devices
	Block devices
	Network devices
	Finding out about drivers at runtime
	Getting information from sysfs

	Finding the right device driver
	Device drivers in user space
	GPIO
	LEDs
	I2C
	SPI

	Writing a kernel device driver
	Designing a character driver interface
	The anatomy of a device driver
	Compiling kernel modules
	Loading kernel modules

	Discovering the hardware configuration
	Device trees
	The platform data
	Linking hardware with device drivers

	Summary
	Further reading

	Chapter 12: Prototyping with Breakout Boards
	Technical requirements
	Mapping schematics to the device tree's source
	Reading schematics and data sheets
	Installing Debian on the BeagleBone Black
	Enabling spidev
	Customizing the device tree

	Prototyping with breakout boards
	Closing the SPI jumper
	Attaching the GNSS antenna
	Attaching the SPI header
	Connecting the SPI jumper wires

	Probing SPI signals with a logic analyzer
	Receiving NMEA messages over SPI
	Summary
	Further reading

	Chapter 13: Starting Up – The init Program
	Technical requirements
	After the kernel has booted
	Introducing the init programs
	BusyBox init
	Buildroot init scripts

	System V init
	inittab
	The init.d scripts
	Adding a new daemon
	Starting and stopping services

	systemd
	Building systemd with the Yocto Project and Buildroot
	Introducing targets, services, and units
	How systemd boots the system
	Adding your own service
	Adding a watchdog
	Implications for embedded Linux

	Summary
	Further reading

	Chapter 14: Starting with BusyBox runit
	Technical requirements
	Getting BusyBox runit
	Creating service directories and files
	Service directory layout
	Service configuration

	Service supervision
	Controlling services

	Depending on other services
	Start dependencies
	Custom start dependencies
	Putting it all together

	Dedicated service logging
	How does it work?
	Adding dedicated logging to a service
	Log rotation

	Signaling a service
	Summary
	Further reading

	Chapter 15: Managing Power
	Technical requirements
	Measuring power usage
	Scaling the clock frequency
	The CPUFreq driver
	Using CPUFreq

	Selecting the best idle state
	The CPUIdle driver
	Tickless operation

	Powering down peripherals
	Putting the system to sleep
	Power states
	Wakeup events
	Timed wakeups from the real-time clock

	Summary
	Further reading

	Section 3: Writing Embedded Applications
	Chapter 16: Packaging Python
	Technical requirements
	Getting Docker

	Retracing the origins of Python packaging
	distutils
	setuptools
	setup.py

	Installing Python packages with pip
	requirements.txt

	Managing Python virtual environments with venv
	Installing precompiled binaries with conda
	Environment management
	Package management

	Deploying Python applications with Docker
	The anatomy of a Dockerfile
	Building a Docker image
	Running a Docker image
	Fetching a Docker image
	Publishing a Docker image
	Cleaning up

	Summary
	Further reading

	Chapter 17: Learning about Processes and Threads
	Technical requirements
	Process or thread?
	Processes
	Creating a new process
	Terminating a process
	Running a different program
	Daemons
	Inter-process communication

	Threads
	Creating a new thread
	Terminating a thread
	Compiling a program with threads
	Inter-thread communication
	Mutual exclusion
	Changing conditions
	Partitioning the problem

	ZeroMQ
	Getting pyzmq
	Messaging between processes
	Messaging within processes

	Scheduling
	Fairness versus determinism
	Time-shared policies
	Real-time policies
	Choosing a policy
	Choosing a real-time priority

	Summary
	Further reading

	Chapter 18: Managing Memory
	Technical requirements
	Virtual memory basics
	Kernel space memory layout
	How much memory does the kernel use?

	User space memory layout
	The process memory map
	Swapping
	Swapping to compressed memory (zram)

	Mapping memory with mmap
	Using mmap to allocate private memory
	Using mmap to share memory
	Using mmap to access device memory

	How much memory does my application use?
	Per-process memory usage
	Using top and ps
	Using smem
	Other tools to consider

	Identifying memory leaks
	mtrace
	Valgrind

	Running out of memory
	Summary
	Further reading

	Section 4: Debugging and Optimizing Performance
	Chapter 19: Debugging with GDB
	Technical requirements
	The GNU debugger
	Preparing to debug
	Debugging applications
	Remote debugging using gdbserver
	Setting up the Yocto Project for remote debugging
	Setting up Buildroot for remote debugging
	Starting to debug
	Native debugging

	Just-in-time debugging
	Debugging forks and threads
	Core files
	Using GDB to look at core files

	GDB user interfaces
	Terminal User Interface
	Data Display Debugger
	Visual Studio Code

	Debugging kernel code
	Debugging kernel code with kgdb
	A sample debug session
	Debugging early code
	Debugging modules
	Debugging kernel code with kdb
	Looking at an Oops
	Preserving the Oops

	Summary
	Further reading

	Chapter 20: Profiling and Tracing
	Technical requirements
	The observer effect
	Symbol tables and compile flags

	Beginning to profile
	Profiling with top
	The poor man's profiler
	Introducing perf
	Configuring the kernel for perf
	Building perf with the Yocto Project
	Building perf with Buildroot
	Profiling with perf
	Call graphs
	perf annotate

	Tracing events
	Introducing Ftrace
	Preparing to use Ftrace
	Using Ftrace
	Dynamic Ftrace and trace filters
	Trace events

	Using LTTng
	LTTng and the Yocto Project
	LTTng and Buildroot
	Using LTTng for kernel tracing

	Using BPF
	Configuring the kernel for BPF
	Building a BCC toolkit with Buildroot
	Using BPF tracing tools

	Using Valgrind
	Callgrind
	Helgrind

	Using strace
	Summary
	Further reading

	Chapter 21: Real-Time Programming
	Technical requirements
	What is real time?
	Identifying sources of non-determinism
	Understanding scheduling latency
	Kernel preemption
	The real-time Linux kernel (PREEMPT_RT)
	Threaded interrupt handlers

	Preemptible kernel locks
	Getting the PREEMPT_RT patches
	The Yocto Project and PREEMPT_RT

	High-resolution timers
	Avoiding page faults
	Interrupt shielding
	Measuring scheduling latencies
	cyclictest
	Using Ftrace
	Combining cyclictest and Ftrace

	Summary
	Further reading
	Why subscribe?

	Other Books You May Enjoy
	Packt is searching for authors like you
	Leave a review - let other readers know what you think


